Nota de Imprensa
A Glimpse into the Time Before Quasars Were Born
28 de Novembro de 1996
According to the widely accepted Big Bang theory, the first galaxies formed by gravitational accretion from slight irregularities in a primordial sea of matter, a process that required considerable time. Hence it would be expected that there would be a delay between the Big Bang and the appearance of the first galaxies. Or, looking back in time from the present, we would expect to find an epoch in the distant past when galaxies had not yet come into being.
The space density of quasars
An international group of astronomers 1 has now performed observations that seem to offer a glimpse into this very early period. They show that, when looking further and further into space and therefore successively farther back in time, the space density of quasars, after first increasing towards a maximum, then declines rapidly towards zero.
Quasars are thought to be the nuclei of active galaxies, that is galaxies in the process of formation or undergoing violent interactions with other galaxies. Such objects are extremely bright and they can be seen across the Universe. That is the reason why quasars, rather than the much fainter normal galaxies, have been used to study the distant Universe.
The possible existence of a rapid decline in the number of quasars as we look into the very distant Universe has been suspected for many years. Recent searches for distant quasars by means of optical telescopes observing their visible light have provided the strongest evidence. However, it has also been suggested that this decline could be merely due to obscuration caused by material in intervening galaxies - the distant Universe may be hidden from view.
Observations of radio sources
Radio waves are unaffected by dust, however, and many quasars are strong radio sources. Therefore, the group of astronomers from Germany, Great Britain, and the United States recently undertook a search for very distant quasars based on their radio emission.
This involved measuring accurate positions of hundreds of radio sources using two large radio telescopes, the Australia Telescope in New South Wales and the Very Large Array in New Mexico, and identifying them with visible counterparts using the European Southern Observatory's 3.6-metre telescope on La Silla, Chile.
The blue light from objects in the early Universe is known to be absorbed by atomic hydrogen in intervening gas clouds, and this provides a signature for very distant objects. Thus, the astronomers sought optical identifications of the radio sources which are visible only at the red end of the optical spectrum, and which are point-like in appearance (from this originates the term quasi-stellar objects, or quasars), in contrast to the fuzzy appearance of galaxies.
The most distant radio quasars
One of the identified objects had these characteristics, and indeed it was found to be the most distant radio quasar known. But no other radio quasars were found at greater distances, although they could easily have been detected by these observations if they were there.
Because all of the other radio sources were identified with more nearby quasars and galaxies, by a process of elimination there were simply none left that could be quasars at very large distances.
It was therefore possible to confirm that, beyond a distance corresponding to the time when the Universe was less than 10 percent of its present age (i.e. less than about 1-2 billion years old), the number of quasars decreases dramatically (see the figure) - a conclusion which is independent of any possible complications due to dust obscuration.
Looking into the Dark Ages
It thus appears that astronomers may now be seeing beyond the most distant quasars, and possibly galaxies, into the so-called Dark Ages when the first galaxies had not yet formed.
This provides further support for the Big Bang evolutionary cosmologies, according to which there should be a significant delay between the Big Bang and the appearance of the first galaxies. Detection of the pre-existing gas clouds out of which the galaxies formed at this early epoch will be one of the major challenges for astronomy in the years to come.
Publication of the results
These results will appear in a scientific article to be published in the December 5, 1996, issue of the journal Nature.
Notas
[1] The group consists of Peter Shaver (European Southern Observatory, Garching, Germany), Jasper Wall (Royal Greenwich Observatory, Cambridge, UK), Ken Kellermann (National Radio Astronomy Observatory, Charlottesville, VA, USA), Carole Jackson (Institute of Astronomy, Cambridge, UK), and Mike Hawkins (Royal Observatory, Edinburgh, UK).
Sobre a Nota de Imprensa
Nº da Notícia: | eso9641 |
Legacy ID: | PR 15/96 |
Nome: | Quasar, Universe |
Tipo: | Early Universe : Cosmology : Morphology : Large-Scale Structure |
Facility: | ESO 3.6-metre telescope |
Instrumentos: | EFOSC |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.