Tisková zpráva

Nearby Voids in the Universe

Motions of Nearby Galaxies Reveal No Invisible Matter

25. července 1996

Using telescopes in Chile, Europe, Australia and the USA, an international team of astronomers [1] has discovered large empty regions ('holes') in what they refer to as the 'local Universe'. These regions, as well as others with excess mass density are revealed by a study of the motions in space of more than 2000 galaxies. They are among the largest structures ever seen in the Universe and have diameters of up to 100 million light years.

Large empty regions in the nearby Universe

Astronomers have known for a number of years that there are regions in the Universe where no galaxies, stars or gas can be seen by optical telescopes. In professional language, such `holes' are commonly referred to as `voids' . For some time, astronomers around the world have tried to detect at least some galaxies in these voids by using larger and more sensitive telescopes. Amazingly, only few such galaxies have ever been found, even by use of the best available equipment.

The failure to detect anything in these voids has led to speculations about the nature of the matter in voids. Could it be that it is there, but not in the form astronomers are best familiar with, namely stars and galaxies which can be detected with modern telescopes? Is it perhaps in some kind of exotic, invisible state?

The new study now gives a surprisingly simple answer to that question: There just is no matter in the voids!

How to detect the 'voids'

Astronomers can easily detect normal galaxies at very large distances with the help of technologically advanced optical telescopes, like the ones operated by the European Southern Observatory at La Silla in Chile. It was during such investigations in the 1980's, at ESO and elsewhere, that some `voids' were first found as regions of space where few galaxies could be seen.

However, it is very difficult to prove that there is 'nothing', i.e. absence of visible as well as invisible matter, in some region of the Universe. The reason is that matter may `hide' from the astronomers' view by not forming any stars. If so, matter could exist in a form that is not visible with a telescope.

For the present investigation, the team of astronomers used a completely different method to detect matter in the local universe. They set out by measuring the speed with which over 2000 well known galaxies move through space, by means of radio and optical telescopes around the world.

From galaxy velocities to mass density

ESO astronomers Luiz da Costa and Wolfram Freudling then developed a computer program which determines, from such measurements, how the matter is distributed in the corresponding region of space. The technique is essentially to check which distribution of matter will best reproduce the observed galaxy velocities.

For this, the programme relies only on the universal law of gravitation. As the end product, it delivers a simulated three-dimensional image of the distribution of all matter present, i.e. including otherwise invisible matter, if there is any.

Looking at the resulting map of the matter distribution, the ESO astronomers found several voids without any matter at all. This result was so surprising that both of them spent several months carefully checking all parts of their complex computer programme. Only after thorough tests confirmed the initial finding did they decide to present the outcome of this work. This trailblazing result will now be published in an article in the September 1, 1996, issue of the Astrophysical Journal Letters (Vol. 468, p. 5).

eso9631a that accompanies this Press Release is an example of a 'cut' through the local region of space. The Milky Way galaxy in which we live is at the centre. Empty voids, as well as regions with excess mass, for instance the `Great Attractor' that is known from earlier studies, are clearly seen.

So where is the matter?

How can there be such large empty regions? And how do they arise? These are fundamental questions which must be answered before we may claim to understand the evolution of the Universe.

Most astronomers believe that the Universe was formed about 10-15 billion years ago in a big explosion, the 'Big Bang'. From recent satellite and ground-based measurements of radio emission (the 'Cosmic Background Radiation') produced just after the Big Bang, it is known that no holes existed at that early time.

Therefore, the holes can only have formed later. Astronomers would therefore expect to find regions with larger number of galaxies which 'compensate' for the lack of matter in the large holes in the matter distribution. Indeed, many clusters of galaxies have been observed in which the mean mass density is higher than in the surroundings, but there is still not enough matter to explain the emptiness of the newly discovered holes.

It therefore appears that current theories of the formation of galaxies must be revised in order to explain this fundamentally new finding.

Poznámky

[1] The team consists of Luiz N. da Costa and Wolfram Freudling (European Southern Observatory), Gary Wegner (Dartmouth College, UK), Riccardo Giovanelli and Martha P. Haynes (Cornell University, USA), and John J. Salzer (Wesleyan University, USA).

Connect with ESO on social media

O zprávě

Tiskové zpráva č.:eso9631
Legacy ID:PR 10/96
Jméno:Dark Matter
Typ:Unspecified : Cosmology : Morphology : Large-Scale Structure
Facility:Other

Obrázky

Nearby voids in the Universe
Nearby voids in the Universe

Pošlete nám komentář!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.