Tisková zpráva
ALMA objevila továrnu na komety
Nová pozorování 'prachové pasti' kolem mladé hvězdy pomohla vyřešit letitou záhadu vzniku planet
6. června 2013
Astronomové využívající nový teleskop ALMA (Atacama Large Millimeter/submillimeter Array) zachytili oblast kolem mladé hvězdy, kde se prachové částice mohou shlukovat a zvětšovat. Je to poprvé, kdy se podařilo takovou prachovou past pozorovat a také modelovat. Vyřešila se tak letitá záhada, jakým způsobem v disku dochází k růstu prachových částic až do té míry, že se následně mohou zformovat do podoby komet, planet a dalších velkých kamenných objektů. Výsledky byly publikovány 7. června 2013 v odborném časopise Science.
Astronomové dnes vědí, že planety se u cizích hvězd vyskytují opravdu hojně. Nevědí však přesně, jak vznikají, neboť formování komet, planetek a dalších kamenných těles zahrnuje mnoho neznámých nebo málo prozkoumaných procesů. Nová pozorování pomocí výkonného teleskopu ALMA však nyní pomohla zodpovědět jednu z nejvýznamnějších otázek: jak narůstají malá prachová zrnka v disku do větších rozměrů, aby mohla vytvořit hrudky, kaménky a větší tělesa o metrových rozměrech?
Počítačové modely naznačují, že k růstu prachových zrn dochází slepováním při vzájemných kolizích. Jenomže když dojde k další srážce větších zrn vysokou rychlostí, často se opět rozbijí. A i kdyby k rozbíjení nedocházelo, modely ukazují, že větší zrnka by v důsledku tření o plyn rychle klesala směrem do středu soustavy a nakonec by dopadla na mateřskou hvězdu. Nemají tak šanci se zvětšit.
Prachové částice zkrátka potřebují jakýsi ‚klidný přístav‘, kde by mohly pokračovat v růstu až do okamžiku, kdy se z nich stanou tělesa schopná samostatného přežití [1]. Existence takových 'prachových pastí' byla navržena již dříve, ale až dosud neexistovaly pozorovací důkazy, které by tuto teorii podpořily.
Hlavní autorka této práce Nienke van der Marel (studentka postgraduálního studia PhD, Leiden Observatory, Nizozemí) a její kolegové použili teleskop ALMA ke studiu disku ve hvězdném systému označeném Oph-IRS 48 [2]. Podařilo se jim objevit, že disk obíhající kolem hvězdy je tvořen plynem a uprostřed má mezeru, která je patrně způsobena přítomností nepozorované planety nebo druhé hvězdy. Dřívější pozorování stejného systému pomocí dalekohledu VLT odhalila, že drobné prachové částice vytvářejí kolem hvězdy podobnou diskovou strukturu. Ale nový pohled na rozložení milimetrových prachových zrnek pomocí teleskopu ALMA ukázal něco zcela jiného!
„Rozložení prachu na snímku, který jsme získali, bylo pro nás na první pohled naprosto překvapivé,“ říká Nienke van der Marel. „Místo disku, který jsme očekávali, jsme spatřili tvar připomínající kešu oříšek! Museli jsme sami sebe přesvědčit, že tato struktura je reálná. Ale síla signálu a rozlišení teleskopu ALMA nás nenechaly na pochybách. A pak nám došlo, co jsme objevili.“
Podařilo se jim nalézt oblast, ve které byla zachycena větší prachová zrna, a kde tedy mohou vyrůst do mnohem větší velikosti díky pomalým srážkám a slepování. Je to přesně taková prachová past, jakou teoretikové dlouho hledali.
Nienke van der Marel dále vysvětluje: "Nejspíš se nám podařilo nalézt něco jako továrnu na komety. Jsou zde příhodné podmínky pro růst prachových zrn z milimetrových rozměrů až na kilometrové objekty. Není ale pravděpodobné, že by v této části systému mohly z prachu vzniknout velké planety. V blízké budoucnosti však bude teleskop ALMA schopen pozorovat prachové pasti blíže k mateřským hvězdám, kde funguje stejný mechanismus. A takové oblasti by skutečně mohly být kolébkami nově vznikajících planet."
Prachová past vznikne při pohybu větších částic směrem do oblastí s vyšším tlakem. Počítačové modely ukazují, že oblasti s vyšším tlakem mají svůj původ v pohybech plynu na hranici centrální mezery disku – přesně jako v tomto případě.
„Spojení modelů a vysoce kvalitních pozorování pomocí ALMA je v případě našeho projektu unikátní,“ říká člen týmu Cornelis Dullemond (Institute for Theoretical Astrophysics, Heidelberg, Německo), specialista na vývoj prachových disků a jejich modelování. „Zhruba v době, kdy byla tato pozorování provedena, jsme pracovali na modelech, které přesně předpověděly právě tento typ útvaru. Byla to šťastná náhoda.“
Pozorování byla provedena polem antén teleskopu ALMA ještě v průběhu konstrukční fáze. K pozorování bylo použito přijímačů pro 9. pásmo ALMA (ALMA Band 9) – ty byly vyrobeny v Evropě a umožňují teleskopu ALMA vytvářet mnohem ostřejší snímky.
„Je to ukázka toho, že ALMA byla schopná dodávat převratné vědecké výsledky i v době, kdy jí tvořila necelá polovina z celkového počtu dnes používaných antén,“ říká Ewine van Dishoeck (Leiden Observatory), dlouholetý významný pracovník projektu ALMA. „Mimořádný skok v citlivosti i rozlišení právě v 9. pásmu nám dává možnost zkoumat základní aspekty vzniku planet způsobem, jaký dosud nebyl možný.“
Poznámky
[1] Příčina prachové pasti, v tomto případě vír v plynovém disku, má typickou životnost stovky až tisíce let. I když prachová past zanikne, nahromaděnému prachu trvá miliony let, než se opět rozptýlí, což poskytuje dodatečný čas k dalšímu růstu zrn.
[2] Označení je kombinací jména souhvězdí (i oblasti hvězdotvorby, kde se systém nachází) a typu zdroje. V tomto případě Oph je zkratkou souhvězdí Hadonoše (Ophiuchus) a IRS značí, že se jedná o infračervený zdroj. Vzdálenost systému Oph-IRS 48 je asi 400 světelných let.
[3] Teleskop ALMA je schopen pozorovat v několika různých pásmech. Pásmo 9 umožňuje sledování vlnových délek v rozmezí 0,4 až 0,5 milimetru. V tomto módu má teleskop nejvyšší rozlišení.
Další informace
Výzkum byl prezentován v článku “A major asymmetric dust trap in a transition disk“ autorů van der Marel a kol., který vyšel 7. června 2013 v odborném časopise Science.
Složení týmu: Nienke van der Marel (Leiden Observatory, Leiden, Nizozemí), Ewine F. van Dishoeck (Leiden Observatory; Max-Planck-Institut für Extraterrestrische Physik Garching, Německo [MPE]), Simon Bruderer (MPE), Til Birnstiel (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA [CfA]), Paola Pinilla (Heidelberg University, Heidelberg, Německo), Cornelis P. Dullemond (Heidelberg University), Tim A. van Kempen (Leiden Observatory; Joint ALMA Offices, Santiago, Chile), Markus Schmalzl (Leiden Observatory), Joanna M. Brown (CfA), Gregory J. Herczeg (Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, Čína), Geoffrey S. Mathews (Leiden Observatory) a Vincent Geers (Dublin Institute for Advanced Studies, Dublin, Irsko).
ESO je nejvýznamnější mezivládní astronomická organizace Evropy a v současnosti nejproduktivnější pozemní astronomická observatoř. ESO podporuje celkem 15 členských zemí: Belgie, Brazílie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko a Velká Británie. ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a úspěšný chod výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také vedoucí úlohu při podpoře a organizaci spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal provozuje Velmi velký teleskop (VLT), což je nejvyspělejší astronomická observatoř pro viditelnou oblast světla, a také dva další přehlídkové teleskopy. VISTA pracuje v infračervené části spektra a je největším přehlídkovým dalekohledem na světě, dalekohled VST (VLT Survey Telescope) je největším teleskopem navrženým k prohlídce oblohy výhradně ve viditelné části spektra. ESO je evropským partnerem revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Pro viditelnou a blízkou infračervenou oblast ESO rovněž plánuje nový dalekohled E-ELT (European Extremely Large optical/near-infrared Telescope) s primárním zrcadlem o průměru 39 metrů, který se stane „největším okem do vesmíru“.
Odkazy
- snímky dalekohledu ALMA
- další záběry pořízene dalekohledem ALMA
- tiskové zprávy ALMA
Kontakty
Nienke van der Marel
Leiden Observatory
Leiden, The Netherlands
Tel.: +31 71 527 8472
Mobil: +31 62 268 4136
Email: nmarel@strw.leidenuniv.nl
Ewine van Dishoeck
Leiden Observatory
Leiden, The Netherlands
Tel.: +31 71 527 5814
Email: ewine@strw.leidenuniv.nl
Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6655
Mobil: +49 151 1537 3591
Email: rhook@eso.org
Anežka Srbljanović (press contact Česko)
ESO Science Outreach Network
a Astronomical Institute of Czech Academy of Sciences
Tel.: +420 323 620 116
Email: eson-czech@eso.org
O zprávě
Tiskové zpráva č.: | eso1325cs |
Jméno: | Oph-IRS 48, Ophiuchus |
Typ: | Milky Way : Star : Circumstellar Material : Planetary System |
Facility: | Atacama Large Millimeter/submillimeter Array |
Science data: | 2013Sci...340.1199V |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.