eso2105pt-br — Nota de imprensa científica

Astrônomos observam campos magnéticos nas bordas do buraco negro de M87

24 de Março de 2021

A colaboração EHT (Event Horizon Telescope), que nos mostrou a primeira imagem de um buraco negro, revelou hoje uma nova visão do objeto massivo situado no centro da galáxia Messier 87 (M87): como ele se parece em luz polarizada. Esta é a primeira vez que os astrônomos conseguiram medir a polarização, uma assinatura de campos magnéticos, tão perto da borda de um buraco negro. Estas observações são cruciais para explicar como é que a M87, situada a 55 milhões de anos-luz de distância de nós, consegue lançar jatos energéticos a partir do seu centro.

Estamos vendo agora a próxima pista crucial para compreender como é que os campos magnéticos se comportam em torno dos buracos negros e como é que a atividade nesta região compacta do espaço consegue lançar jatos tão poderosos que se estendem para além da galáxia”, disse Monika Mościbrodzka, Coordenadora do Grupo de Trabalho de Polarimetria do EHT e Professora Assistente na Universidade Radboud na Holanda.

No dia 10 de abril de 2019, os cientistas divulgaram a primeira imagem de um buraco negro, relevando uma estrutura brilhante em forma de anel com uma região central escura — a sombra do buraco negro. Desde então, a colaboração EHT se aprofundou nos dados sobre o objeto supermassivo no coração da galáxia M87 coletados em 2017 e descobriu que uma fração significativa da luz em torno do buraco negro da M87 se encontra polarizada.

Esta descoberta é um marco importante: a polarização da luz carrega informações que nos permitem compreender melhor a física por trás da imagem que vimos em abril de 2019, o que não era possível antes”, explica Iván Martí-Vidal, também Coordenador do Grupo de Trabalho de Polarimetria do EHT e Pesquisador do GenT na Universidade de Valência, Espanha. Ele acrescenta que “para revelar esta nova imagem em luz polarizada foram precisos anos de trabalho devido às técnicas complexas envolvidas na obtenção e análise dos dados.

A luz torna-se polarizada quando passa por determinados filtros, tal como as lentes polarizadas dos óculos de sol ou quando é emitida em regiões quentes do espaço onde existem campos magnéticos. Da mesma forma que os óculos de sol polarizados nos ajudam a ver melhor ao reduzir os reflexos e o brilho de superfícies brilhantes, também os astrônomos podem ter uma visão mais nítida da região em torno do buraco negro ao observar como é que a luz que daí emerge está polarizada. Especificamente, a polarização permite aos astrônomos mapear as linhas do campo magnético presentes na borda interna do buraco negro.

As novas imagens polarizadas publicadas são fundamentais para compreendermos como é que o campo magnético permite que o buraco negro 'coma' matéria e lance jatos poderosos”, diz Andrew Chael, membro da colaboração EHT, pesquisador do Hubble da NASA no Princeton Center for Theoretical Science e Princeton Gravity Initiative, nos EUA.

Os jatos brilhantes de energia e matéria que emergem do núcleo da M87 e se estendem pelo menos 5000 anos-luz a partir do seu centro são uma das estruturas mais misteriosas e energéticas da galáxia. A maioria da matéria que se encontra perto das bordas do buraco negro cai para dentro deste. No entanto, algumas das partículas circundantes escapam momentos antes de serem capturadas e são lançadas para o espaço sob a forma de jatos.

Os astrônomos têm contado com diferentes modelos teóricos que explicam como a matéria se comporta perto do buraco negro para compreender melhor este processo. No entanto, ainda não se sabe exatamente como é que jatos maiores que a galáxia são lançados da sua região central, região esta que é comparável ao nosso Sistema Solar em termos de tamanho, nem como é que a matéria cai exatamente no buraco negro. Com a nova imagem EHT do buraco negro e da sua sombra em luz polarizada, os astrônomos conseguiram olhar pela primeira vez para a região que fica logo a seguir ao buraco negro, local onde ocorre a interação entre a matéria que está fluindo para o buraco negro e a matéria que está a ser ejetada.

As observações fornecem novas informações sobre a estrutura dos campos magnéticos fora do buraco negro. A equipe descobriu que apenas modelos teóricos com gás fortemente magnetizado conseguem explicar o que estamos vendo no horizonte de eventos.

As observações sugerem que os campos magnéticos na borda do buraco negro são suficientemente fortes para empurrar o gás quente e ajudá-lo a resistir à força da gravidade. Apenas o gás que escapa ao campo magnético consegue espiralar em direção ao horizonte de eventos do buraco negro”, explica Jason Dexter, Professor Assistente na University of Colorado Boulder, EUA, e Coordenador do Grupo de Trabalho Teórico do EHT.

Para observar o coração da M87, a colaboração EHT ligou oito telescópios ao redor do mundo — incluindo o Atacama Large Millimeter/submillimeter Array (ALMA) e o Atacama Pathfinder EXperiment (APEX) no norte do Chile, dos quais o ESO é parceiro — para criar um telescópio virtual do tamanho da Terra, o EHT. A impressionante resolução obtida com o EHT é equivalente a conseguir medir o comprimento de um cartão de crédito na superfície da Lua.

Com o ALMA e o APEX, que a partir da sua localização ao sul melhoram a qualidade da imagem ao aumentar geograficamente a rede EHT, os cientistas europeus desempenharam um papel crucial nesta pesquisa”, diz Francisca Kemper, cientista do ALMA europeu no ESO. “Com as suas 66 antenas, o ALMA domina o sinal total coletado em luz polarizada, enquanto o APEX se revelou essencial para a calibração da imagem”.

Os dados ALMA também foram cruciais para calibrar, obter a imagem e interpretar as observações do EHT, fornecendo restrições rígidas sobre os modelos teóricos que explicam como a matéria se comporta perto do horizonte de eventos do buraco negro", acrescenta Ciriaco Goddi, cientista na Universidade Radboud e no Observatório de Leiden, Holanda, que liderou um estudo de acompanhamento baseado apenas nas observações ALMA.

 A rede EHT permitiu à equipe observar de forma direta a sombra do buraco negro e o anel de luz que a rodeia, com a nova imagem em luz polarizada mostrando claramente que o anel está magnetizado. Os resultados foram publicados hoje pela colaboração EHT em dois artigos científicos na revista The Astrophysical Journal Letters. A pesquisa envolveu mais de 300 pesquisadores de várias organizações e universidades em todo o mundo.

O EHT está fazendo avanços rápidos, com atualizações tecnológicas sendo feitas na rede e novos observatórios sendo adicionados. Esperamos que futuras observações do EHT revelem com mais precisão a estrutura do campo magnético ao redor do buraco negro e nos digam mais sobre a física do quente gás nesta região", conclui o membro da colaboração EHT Jongho Park, membro da East Asian Core Observatories Association da Academia Sinica Institute of Astronomy and Astrophysics, em Taipei.

Mais Informações

Esta pesquisa foi apresentada em dois artigos pela colaboração EHT publicados hoje no The Astrophysical Journal Letters e intitulados "First M87 Event Horizon Telescope Results VII: Polarization of the Ring" (doi: 10.3847/2041-8213/abe71d) e "First M87 Event Horizon Telescope Results VIII: Magnetic Field Structure Near The Event Horizon” (doi: 10.3847/2041-8213/abe4de). Uma pesquisa complementar foi apresentada num artigo intitulado "Polarimetric properties of Event Horizon Telescope targets from ALMA" (doi: 10.3847/2041-8213/abee6a) de Goddi, Martí-Vidal, Messias e a colaboração EHT, que foi aceito para publicação no The Astrophysical Journal Letters.

A colaboração EHT envolve mais de 300 pesquisadores da África, Ásia, Europa e América. A colaboração internacional está trabalhando para capturar as imagens mais detalhadas de buracos negros já obtidas com a criação de um telescópio virtual do tamanho da Terra. Apoiado por investimento internacional considerável, o EHT liga telescópios já existentes usando sistemas inovadores para criar um instrumento fundamentalmente novo com o maior poder de resolução angular que já foi alcançado.

Os telescópios individuais envolvidos são: Atacama Large Millimeter/submillimeter Array (ALMA), Atacama Pathfinder Experiment (APEX), Telescópio IRAM de 30 metros (Institut de Radioastronomie Millimetrique), IRAM NOEMA Observatory, James Clerk Maxwell Telescope (JCMT), Large Millimeter Telescope (LMT), Submillimeter Array (SMA), Submillimeter Telescope (SMT), South Pole Telescope (SPT), Kitt Peak Telescope e Greenland Telescope (GLT).

O consórcio EHT é constituído por 13 institutos investidores: Academia Sinica Institute of Astronomy and Astrophysics, University of Arizona, University of Chicago, East Asian Observatory, Goethe-Universitaet Frankfurt, Institut de Radioastronomie Millimétrique, Large Millimeter Telescope, Max Planck Institute for Radio Astronomy, MIT Haystack Observatory, National Astronomical Observatory of Japan, Perimeter Institute for Theoretical Physics, Radboud University e Smithsonian Astrophysical Observatory.

O ESO é a mais importante organização europeia intergovernamental para a pesquisa em astronomia e é de longe o observatório astronômico mais produtivo do mundo. O ESO tem 16 Estados Membros: Alemanha, Áustria, Bélgica, Dinamarca, Espanha, Finlândia, França, Holanda, Irlanda, Itália, Polônia, Portugal, Reino Unido, República Tcheca, Suécia e Suíça, além do país anfitrião, o Chile, e a Austrália, como parceiro estratégico. O ESO se destaca por realizar um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronômicos terrestres de ponta, que possibilitam aos astrônomos importantes descobertas científicas. O ESO também desempenha um papel de liderança na promoção e organização da cooperação em pesquisa astronômica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope e o Interferômetro do Very Large Telescope, o observatório astronômico óptico mais avançado do mundo, além de dois telescópios de rastreio: o VISTA, que trabalha no infravermelho, e o VLT Survey Telescope, concebido exclusivamente para mapear os céus no visível. O ESO também é um parceiro importante em duas instalações situadas no Chajnantor, o APEX e o ALMA, o maior projeto astronômico que existe atualmente. E no Cerro Armazones, próximo do Paranal, o ESO está construindo o Extremely Large Telescope (ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.

O Atacama Large Millimeter/submillimeter Array (ALMA), uma instalação astronômica internacional, é uma parceria entre o ESO, a Fundação Nacional de Ciências dos Estados Unidos (NSF) e os Institutos Nacionais de Ciências da Natureza (NINS) do Japão, em cooperação com a República do Chile. O ALMA é financiado pelo ESO em nome dos seus Estados Membros, pela NSF em cooperação com o Conselho Nacional de Pesquisa do Canadá (NRC) e do Conselho Nacional de Ciência de Taiwan (NSC) e pelo NINS em cooperação com a Academia Sinica (AS) em Taiwan e o Instituto de Astronomia e Ciências Espaciais da Coreia (KASI). A construção e operação do ALMA é coordenada pelo ESO, em nome dos seus Estados Membros; pelo Observatório Nacional de Radioastronomia dos Estados Unidos (NRAO), que é gerido pela Associação de Universidades, Inc. (AUI), em nome da América do Norte e pelo Observatório Astronômico Nacional do Japão (NAOJ), em nome do Leste Asiático. O Observatório Conjunto ALMA (JAO) fornece uma liderança e gestão unificadas na construção, comissionamento e operação do ALMA.

O grupo de pesquisa BlackHoleCam recebeu 14 milhões de euros do European Research Council através da Synergy Grant, em 2013. Os principais pesquisadores são Heino Falcke, Luciano Rezzolla e Michael Kramer e os institutos parceiros são JIVE, IRAM, MPE Garching, IRA/INAF Bologna, SKA e ESO. O BlackHoleCam faz parte da colaboração Event Horizon Telescope.

Links

Contatos

Monika Mościbrodzka
Radboud Universiteit
Nijmegen, The Netherlands
Tel.: +31-24-36-52485
e-mail: m.moscibrodzka@astro.ru.nl

Ivan Martí Vidal
Universitat de València
Burjassot, València, Spain
Tel.: +34 963 543 078
e-mail: i.marti-vidal@uv.es

Ciska Kemper
European Southern Observatory
Garching bei München, Germany
Tel.: +49(0)89-3200-6447
e-mail: Francisca.Kemper@eso.org

Andrew Chael
Princeton University Center for Theoretical Science
Princeton, New Jersey, USA
e-mail: achael@princeton.edu

Jason Dexter
University of Colorado Boulder
Boulder, Colorado, USA
Tel.: +1 303-492-7836
e-mail: jason.dexter@colorado.edu

Jongho Park
Academia Sinica, Institute of Astronomy and Astrophysics
Taipei
Tel.: +886-2-2366-5462
e-mail: jpark@asiaa.sinica.edu.tw

Ciriaco Goddi
Radboud University and Leiden Observatory
Nijmegen and Leiden, The Netherlands
e-mail: c.goddi@astro.ru.nl

Sara Issaoun
EHT collaboration member at Radboud Universiteit
Nijmegen, The Netherlands
Tel.: +31 (0)6 84526627
e-mail: s.issaoun@astro.ru.nl

Huib Jan van Langevelde
EHT Project Director, Joint Institute for VLBI ERIC
Dwingeloo, The Netherlands
Tel.: +31-521-596515
Cel.: +31-62120 1419
e-mail: langevelde@jive.eu

Geoffrey C. Bower
EHT Project Scientist, Academia Sinica Institute of Astronomy and Astrophysics
Hilo, HI, USA
Cel.: +1 (510) 847-1722
e-mail: gbower@asiaa.sinica.edu.tw

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel.: +49 89 3200 6670
Cel.: +49 151 241 664 00
e-mail: press@eso.org

Connect with ESO on social media

Este texto é a tradução da Nota de Imprensa do ESO eso2105, cortesia do ESON, uma rede de pessoas nos Países Membros do ESO, que servem como pontos de contato local para a imprensa. O representante brasileiro é Eugênio Reis Neto, do Observatório Nacional/MCTIC. A nota de imprensa foi traduzida por Margarida Serote (Portugal) e adaptada para o português brasileiro por Eugênio Reis Neto.

Sobre a nota de imprensa

No. da notícia:eso2105pt-br
Nome:Messier 87
Tipo:Local Universe : Galaxy : Component : Central Black Hole
Facility:Atacama Large Millimeter/submillimeter Array, Atacama Pathfinder Experiment
Science data:2021ApJ...910L..14G

Imagens

Imagem do buraco negro da M87 em luz polarizada
Imagem do buraco negro da M87 em luz polarizada
Imagem do buraco negro supermassivo e jato da M87 em luz polarizada
Imagem do buraco negro supermassivo e jato da M87 em luz polarizada
Imagem do jato da M87 no visível e imagens em luz polarizada do jato e do buraco negro supermassivo da mesma galáxia
Imagem do jato da M87 no visível e imagens em luz polarizada do jato e do buraco negro supermassivo da mesma galáxia
Imagem ALMA do jato da M87 em luz polarizada
Imagem ALMA do jato da M87 em luz polarizada
Primeira imagem de um buraco negro
Primeira imagem de um buraco negro
Messier 87 capturada pelo Very Large Telescope do ESO
Messier 87 capturada pelo Very Large Telescope do ESO
Imagem artística do buraco negro no coração de M87
Imagem artística do buraco negro no coração de M87
Messier 87 na constelação de Virgem
Messier 87 na constelação de Virgem
A contribuição crucial do ALMA e do APEX ao EHT
A contribuição crucial do ALMA e do APEX ao EHT

Vídeos

ESOcast 235 Light: Astrônomos observam campos magnéticos nas bordas de buraco negro
ESOcast 235 Light: Astrônomos observam campos magnéticos nas bordas de buraco negro
Aproximando-se do coração de M87 para ver uma nova imagem do seu buraco negro
Aproximando-se do coração de M87 para ver uma nova imagem do seu buraco negro