Communiqué de presse
The Sky Through Three Giant Eyes
AMBER Instrument on VLT Delivers a Wealth of Results
23 février 2007
The ESO Very Large Telescope Interferometer, which allows astronomers to scrutinise objects with a precision equivalent to that of a 130-m telescope, is proving itself an unequalled success every day. One of the latest instruments installed, AMBER, has led to a flurry of scientific results, an anthology of which is being published this week as special features in the research journal Astronomy & Astrophysics.
"With its unique capabilities, the VLT Interferometer (VLTI) has created itself a niche in which it provide answers to many astronomical questions, from the shape of stars, to discs around stars, to the surroundings of the supermassive black holes in active galaxies," says Jorge Melnick (ESO), the VLT Project Scientist. The VLTI has led to 55 scientific papers already and is in fact producing more than half of the interferometric results worldwide.
"With the capability of AMBER to combine up to three of the 8.2-m VLT Unit Telescopes, we can really achieve what nobody else can do," added Fabien Malbet, from the LAOG (France) and the AMBER Project Scientist.
Eleven articles will appear this week in Astronomy & Astrophysics' special AMBER section. Three of them describe the unique instrument, while the other eight reveal completely new results about the early and late stages in the life of stars.
The first results presented in this issue cover various fields of stellar and circumstellar physics. Two papers deal with very young solar-like stars, offering new information about the geometry of the surrounding discs and associated outflowing winds. Other articles are devoted to the study of hot active stars of particular interest: Alpha Arae, Kappa Canis Majoris, and CPD -57o2874. They provide new, precise information about their rotating gas envelopes.
An important new result concerns the enigmatic object Eta Carinae. Using AMBER with its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars.
Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide.
The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave coming from the nova.
The stream of results from the VLTI and AMBER is no doubt going to increase in the coming years with the availability of new functionalities.
"In addition to the 8.2-m Unit Telescopes, the VLTI can also combine the light from up to 4 movable 1.8-m Auxiliary Telescopes. AMBER fed by three of these AT's will be offered to the user community as of April this year, and from October we will also make FINITO available," said Melnick. "This 'fringe-tracking' device allows us to stabilise changes in the atmospheric conditions and thus to substantially improve the efficiency of the observations. By effectively 'freezing' the interferometric fringes, FINITO allows astronomers to significantly increase the exposure times."
The Astronomy & Astrophysics special feature (volume 464 - March II 2007) on AMBER first results includes 11 articles. They are freely available on the A&A website.
Plus d'informations
The AMBER consortium, led by Romain Petrov (Nice, France), includes researchers from the Laboratoire d'Astrophysique de Grenoble (France), Laboratoire d'Astrophysique Universitaire de Nice (France), Max-Planck Institut für Radioastronomie (Bonn, Germany), INAF-Osservatorio Astrofisico di Arcetri (Italy), and the Observatoire de la Côte d'Azur (Nice, France).
In March 2004, the first on-line tests of AMBER (Astronomical Multiple BEam Recombiner) were completed, when astronomers combined the two beams of light from the southern star Theta Centauri from two test 40-cm aperture telescopes (ESO Press Release eso0410). It was later used to combine light from two, then three Unit Telescopes of ESO's VLT and light from the Auxiliary Telescopes.
AMBER is part of the VLT Interferometer (VLTI) and completes the planned set of first-generation instruments for this facility. It continues the success story of the interferometric mode of the VLT, following the unique initial scientific results obtained by the VINCI and MIDI instruments, the installation of the four MACAO adaptive optics systems and the recent arrival of the last of the four 1.8-m Auxiliary Telescopes at Paranal.
The principle of the interferometric technique is to combine the light collected by two or more telescopes. The greater the distance between the telescopes, the more details one can detect. For the VLTI, this distance can be up to 200 metres, providing observers with milli-arcsecond spatial resolution. With such a high spatial resolution, one would be able to distinguish between the headlights of a car located on the Moon. In addition, AMBER also provides astronomers with spectroscopic measurements, allowing the structure and the physics of the source to be constrained by comparing the measures at different wavelengths.
AMBER combines the light beams from three telescopes - this is a world first for large telescopes such as the VLT. The ability to combine three beams, rather than just two as in a conventional interferometer, provides a substantial increase in the efficiency of observations, permitting astronomers to obtain three baselines simultaneously instead of one. The combination of these three baselines also permits the computation of the so-called closure phase, an important mathematical quantity that can be used in imaging applications.
The AMBER instrument is mounted on a 4.2 x 1.5-m precision optical table, placed in the VLT Interferometric Laboratory at the top of the Paranal mountain. The total shipping weight of the instrument and its extensive associated electronics was almost 4 tons.
Contacts
Jorge Melnick
ESO
Garching, Germany
Tél: +49 89 3200 6297
Courriel: jmelnick@eso.org
Romain Petrov
LUAN/CNRS/UNSA
Nice, France
Tél: +33 4 92 07 63 47
Courriel: Romain.Petrov@unice.fr
Fabien Malbet
LAOG/CNRS/UJF
Grenoble, France
Tél: +33 4 76 63 58 33
Courriel: Fabien.Malbet@obs.ujf-grenoble.fr
A propos du communiqué de presse
Communiqué de presse N°: | eso0706 |
Legacy ID: | PR 06/07 |
Nom: | AMBER, Eta Carinae, RS Ophiuchi |
Type: | Unspecified : Technology : Observatory : Instrument |
Facility: | Very Large Telescope Interferometer |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.