```
1
00:00:05,240 --> 00:00:08,840
望遠鏡 - 這奇妙的儀器,把我們的視覺擴展到
2
00:00:08,920 --> 00:00:13,200
前人所無法想像的層次,更開啟了一扇窗,可以對大自然
3
00:00:13,280 --> 00:00:17,240
作更深入的理解和更完美的認知。- 勒奈.笛卡兒,於1637年
4
00:00:17,760 --> 00:00:22,560
千百年來,人類一直凝望著迷人的夜空
5
00:00:22,640 --> 00:00:28,320
卻不知道我們銀河系中的恆星是別的太陽
6
00:00:28,400 --> 00:00:33,400
也不知道我們的宇宙是由千億個星系所構成
7
00:00:35,440 --> 00:00:38,800
更不知道我們的存在只不過是宇宙 137億年
8
00:00:38,880 --> 00:00:42,520
故事中的彈指一瞬間
9
00:00:42,600 --> 00:00:46,080
單靠我們的肉眼,我們根本無法
10
00:00:46,160 --> 00:00:50,120
在其他恆星中尋找太陽系, 也無法得知
11
00:00:50,200 --> 00:00:55,000
有沒有生命存在於宇宙中其他角落
12
00:00:58,080 --> 00:01:00,320
今天,宇宙中很多謎團正等著我們去解開
13
00:01:00,400 --> 00:01:03,560
因為我們正處於天文發現
1 4
00:01:03,640 --> 00:01:05,960
最為盛況空前的時代
1 5
00:01:05,960 --> 00:01:08,960
我是金博士, 也是各位望遠鏡之旅的響導
16
00:01:09,040 --> 00:01:11,880
這神奇的儀器已經成了人們
```

```
1 7
00:01:11,960 --> 00:01:15,520
通往宇宙的窗口
1 8
00:01:17,960 --> 00:01:21,880
巨眼問穹蒼 - 望遠鏡四百年探索之旅
1 9
00:01:22,200 --> 00:01:26,960
1. 宇宙新見
20
00:01:28,960 --> 00:01:32,120
四個世紀以前,在1609年的時候,有一個人
2 1
00:01:32,240 --> 00:01:34,640
走到他家附近的田地
22
00:01:34,720 --> 00:01:39,000
把自製的望遠鏡指向了月球, 行星與其他恆星
23
00:01:39,080 --> 00:01:42,600
他的名字是伽(《苂利略.伽(<<Y)利萊
24
00:01:44,040 --> 00:01:47,280
從此,天文學就再也不一樣了!
25
00:02:07,440 --> 00:02:12,400
伽利略首次把望遠鏡指向天空以後400年的今天
26
00:02:12,640 --> 00:02:18,280
天文學家使用在偏遠高山上的巨型反射鏡,來巡視天上的世界
27
00:02:18,360 --> 00:02:23,520
電波望遠鏡收集來自外太空的微弱訊息
28
00:02:23,600 --> 00:02:27,680
科學家甚至把望遠鏡發射到太空之中
29
00:02:27,760 --> 00:02:31,960
超越了影響成像的大氣層之上
30
00:02:33,440 --> 00:02:38,680
所見的景絔更是激動人心
3 1
00:02:42,960 --> 00:02:46,640
可是望遠鏡並不是伽利略發明的
32
00:02:46,720 --> 00:02:49,760
```

```
這個功勞要歸給漢斯·利柏黑, 一位名不見經傳的
33
00:02:49,840 --> 00:02:53,400
德國籍荷蘭眼鏡商
34
00:02:53,520 --> 00:02:57,880
但是漢斯·利柏黑從來沒有將望遠鏡指向夜空
35
00:02:57,960 --> 00:03:00,840
他認為這個新發明主要是
36
00:03:00,920 --> 00:03:03,640
對航海家和士兵有用
37
00:03:03,800 --> 00:03:07,240
利柏黑來自米德爾堡市,一個在當時剛立國不久的
38
00:03:07,320 --> 00:03:10,440
荷蘭共和國中的商貿大城市
39
00:03:13,960 --> 00:03:18,040
在1608年,利柏黑發現當望向遠處的景物時
4 0
00:03:18,120 --> 00:03:24,000
透過一組凸透鏡與凹透鏡,那景物會被放大,條件是...
4 1
00:03:24,080 --> 00:03:29,640
那兩塊透鏡之間以一個恰好的距離放置
4 2
00:03:29,720 --> 00:03:33,800
望遠鏡從此誕生了!
4 3
00:03:33,880 --> 00:03:37,520
在1608年9月,利柏黑展示了他的新發明給
4 4
00:03:37,600 --> 00:03:39,880
荷蘭的莫利茲王子看
4 5
00:03:39,960 --> 00:03:42,840
他選擇了一個再有利不過的時機
4 6
00:03:42,920 --> 00:03:45,880
因為當時的荷蘭正捲入
4 7
00:03:45,960 --> 00:03:49,320
與西班牙長達 }80\mathrm{ 年的戰爭中
```

```
00:03:55,320 --> 00:03:59,080
新的小望遠鏡能把物件的影像放大,所以它能顯現出
4 9
00:03:59,160 --> 00:04:02,280
原來單靠肉眼看不見的
5 0
00:04:02,360 --> 00:04:04,360
遙遠的敵艦和軍隊
5 1
00:04:04,440 --> 00:04:07,440
真是一項有用的發明!
5 2
00:04:07,560 --> 00:04:12,000
但是荷蘭政府卻從來沒有把望遠鏡的專利權授予利柏黑
5 3
00:04:12,080 --> 00:04:15,400
因為當時還有其他人聲稱擁有發明權
5 4
00:04:15,520 --> 00:04:19,200
尤其是利柏黑的競爭者察哈里斯·楊生
5 5
00:04:19,280 --> 00:04:21,520
這個爭論一直沒有解決
5 6
00:04:21,600 --> 00:04:27,920
時至今日,望遠鏡的真正起源仍是一個謎團
5 7
00:04:28,920 --> 00:04:32,720
現代物理學之父,義大利天文學家伽利略
5 8
00:04:32,800 --> 00:04:37,640
在聽說了望遠鏡的消息後,便決定自製一台
59
00:04:38,320 --> 00:04:42,360
大概在十個月以前,我聽說了一件事
6 0
00:04:42,440 --> 00:04:48,200
一個法蘭德斯人製造了一具小望遠鏡
6 1
00:04:48,280 --> 00:04:52,960
能清楚地看見非常遙遠的物體
6 2
00:04:53,040 --> 00:04:56,120
就像在附近一樣
6 3
00:04:56,520 --> 00:04:59,440
伽利略是當時最偉大的科學家
```

```
6 4
00:04:59,560 --> 00:05:02,600
他也是新世界觀的強烈支持者
6 5
00:05:02,680 --> 00:05:06,160
這是由波蘭天文學家尼古拉.哥白尼所提出的
6 6
00:05:06,240 --> 00:05:10,440
地球是環繞著太陽運行,而非倒過來
6 7
00:05:11,560 --> 00:05:14,240
根據他所聽說的荷蘭製望遠鏡,伽利略
6 8
00:05:14,320 --> 00:05:16,600
自製了他自己的儀器
6 9
00:05:16,680 --> 00:05:19,160
而且品質更好
70
00:05:20,560 --> 00:05:25,320
終於,省下了勞工與開支,我成功地
7 1
00:05:25,400 --> 00:05:29,680
自製了一具優越的儀器
7 2
00:05:29,760 --> 00:05:33,920
能讓物體看起來比正常視力
7 3
00:05:33,960 --> 00:05:38,840
所見的大上許多倍
74
00:05:39,720 --> 00:05:43,640
該是時候把他的望遠鏡對準天上的世界了
7 5
00:05:45,920 --> 00:05:49,680
我獲得了一個見解和信念,月球的表面
76
00:05:49,800 --> 00:05:53,520
並不像大部份哲學家所相信的那麼
7 7
00:05:53,760 --> 00:05:57,440
光滑,平坦,是一個完美的球體
78
00:05:57,560 --> 00:06:01,720
恰恰相反,它參差不齊,高低不平,並佈滿了凹洞與凸出物
7 9
00:06:01,800 --> 00:06:06,240
和地球的表面沒有差別
```

```
80
00:06:11,640 --> 00:06:15,320
一個由隕石坑, 山脈,和山谷所組成的地形
81
00:06:15,400 --> 00:06:18,320
是一個和我們相像的世界!
82
00:06:19,600 --> 00:06:24,040
幾個星期以後,在1610年1月,伽利略望向木星
83
00:06:24,120 --> 00:06:28,600
他看到木星附近有四顆光點
84
00:06:28,720 --> 00:06:32,960
夜復一夜地跟著木星改變它們在天空的位置
85
00:06:33,040 --> 00:06:37,920
衛星們環繞著木星運行,就像一場緩慢的星空芭蕾舞
86
00:06:37,960 --> 00:06:40,760
這四顆光點後來被稱作
87
00:06:40,840 --> 00:06:43,600
木星的「伽利略衛星」
88
00:06:43,720 --> 00:06:46,240
伽利略還發現了甚麼?
89
00:06:46,320 --> 00:06:48,400
金星的盈虧!
90
00:06:48,560 --> 00:06:51,920
和月球一樣,金星時筫時缺
91
00:06:51,960 --> 00:06:54,200
循環不息
92
00:06:54,280 --> 00:06:58,600
在土星兩邊出現的奇怪附加物
93
00:06:58,720 --> 00:07:01,160
太陽表面上的黑斑點
94
00:07:01,280 --> 00:07:03,440
當然,還有恆星
95
00:07:03,560 --> 00:07:06,400
```

```
成千上萬,甚至上百萬顆
96
00:07:06,520 --> 00:07:09,320
每一顆星單靠肉眼去看都太瞕
97
00:07:09,440 --> 00:07:13,920
這就像人們摘去了一直戴著的眼罩一樣
98
00:07:13,960 --> 00:07:18,000
整個宇宙讓人去重新發現
99
00:07:23,440 --> 00:07:27,760
有關望遠鏡的消息在歐洲像火焰燎原般迅速傳開
100
00:07:27,880 --> 00:07:32,080
布拉格的約翰尼斯.克卜勒在魯道夫二世大帝的宮廷中
1 0 1
00:07:32,200 --> 00:07:34,800
改良了儀器的設計
102
00:07:34,880 --> 00:07:38,840
在安特衛普,荷蘭製圖師米歇爾.馮.蘭格林製作了
1 0 3
00:07:38,960 --> 00:07:41,920
首批準磪的月面地圖,顯示了他所認為的
104
00:07:41,960 --> 00:07:44,400
    「陸地」與「海洋」
105
00:07:44,560 --> 00:07:49,680
一名富有的波蘭啤酒商約翰內斯.赫維留
106
00:07:49,760 --> 00:07:53,200
在他設於但澤的天文台建造了巨型的望遠鏡
107
00:07:53,280 --> 00:07:57,880
這天文台大得要横跨三個樓房屋頂
108
00:07:59,200 --> 00:08:02,240
然而, 當時最佳的儀器或許是
109
00:08:02,320 --> 00:08:05,360
由荷蘭的克里斯蒂安.惠更斯所製作的
110
00:08:05,440 --> 00:08:11,080
1655年,惠更斯發現了土星最大的衛星 - 土衛六泰坦
```

111

```
00:08:11,160 --> 00:08:15,160
數年之後,他的觀測顯示了土星的環系統
112
00:08:15,240 --> 00:08:20,320
那是伽利略一直百思不得其解的
113
00:08:20,400 --> 00:08:24,640
此外,惠更斯還看到火星上暗淡的斑紋標記
114
00:08:24,720 --> 00:08:27,360
和明亮的極冠
115
00:08:27,440 --> 00:08:31,080
究竞這些偏遠的外星世界上有沒有生命?
116
00:08:31,160 --> 00:08:35,240
這個問題, 天文學家至今仍沒有答案
117
00:08:35,920 --> 00:08:39,520
早期的望遠鏡都是折射式的望遠鏡
118
00:08:39,600 --> 00:08:42,680
利用透鏡去收集和聚焦星光
119
00:08:42,760 --> 00:08:45,440
後來, 透鏡被反射鏡所取代
120
00:08:45,560 --> 00:08:49,080
這種反射式望遠鏡首先由尼科羅.祖基所製造
121
00:08:49,160 --> 00:08:52,000
後來由艾薩克. 牛頓所改進
122
00:08:52,080 --> 00:08:55,760
在18世紀末,當時世界上最大的反射鏡是由一位
123
00:08:55,840 --> 00:08:59,600
從音樂家轉而為天文學家的威廉.赫歇爾所鑄成
124
00:08:59,680 --> 00:09:02,520
他和妹妹卡羅琳一起工作
125
00:09:02,600 --> 00:09:06,200
在他們英國巴斯的房子裡,赫歇爾兄妹把
126
00:09:06,280 --> 00:09:09,880
赤熱熔化的金屬灌注到模具裡,等到冷卻以後
```

127
00：09：09，960－－＞00：09：15，440
他們再在表面進行抛光，讓它能夠反射星光
128
00：09：15，560－－＞00：09：20，320
在他的一生中，赫歇爾建造了超過400台望遠鏡
129
00：09：24，520－－＞00：09：28，360
當中最大的一台實在非常巨大，需要動用4名僕人
130
00：09：28，440－－＞00：09：31，600
操作所有的繩索，輪子，和滑輪
131
00：09：31，680－－＞00：09：36，000
用來追蹤恆星在夜空中的運動
132
00：09：36，080－－＞00：09：39，440
那其實是由地球的自轉所造成的
133
00：09：39，560－－＞00：09：43，080
赫歇爾就像一名勘察員，他掃描了天空
134
00：09：43，160－－＞00：09：46，720
為上百個新發現的星雲及雙星編製星表
135
00：09：46，800－－＞00：09：50，280
他又發現銀河系是一個扁平的圓盤
136
00：09：50，360－－＞00：09：54，120
他甚至透過觀測恆星與行星間的相對運動
137
00：09：54，200－－＞00：09：58，840
量測了太陽系在這個圓盤中的運動

138
00：09：58，920－－＞00：10：06，360
然後，在1781年3月13日，赫歇爾發現了一顆新的行星－天王星
139
00：10：06，440－－＞00：10：10，680
經過了200多年，直到NASA（美國太空總署）航海家2號太空船的造訪
140
00：10：10，760－－＞00：10：15，880
天文學家才首次近距離觀看這遙遠的世界
141
00：10：16，800－－＞00：10：21，240
在愛爾蘭中部蒼翠而肥沃的鄉間，威廉．帕森斯
142
00：10：21，320－－＞00：10：26，560
這位第三代的羅斯伯爵建造了十九世紀最大的望遠鏡

143
00：10：26，640－－＞00：10：30，560
它擁有一塊巨大的 1.8 米口徑金屬製的主鏡
144
00：10：30，640－－＞00：10：35，240
這巨大的望遠鏡被稱為「帕森城的龐然大物」
145
00：10：35，320－－＞00：10：39，320
在偶爾晴朗，沒有月光的晚上，伯爵會坐在目鏡的位置
146
00：10：39，440－－＞00：10：44，400
在宇宙星海間航行
147
00：10：45，280－－＞00：10：50，160
前往獵戶座大星雲，現在知道那個是恆星的育嬰室
148
00：10：50，280－－＞00：10：55，920
前進至神袐的蟹狀星雲，那是超新星爆發後的殘骸
149
00：10：55，960－－＞00：10：57，920
還有漩渦星雲？
150
00：10：57，960－－＞00：11：02，560
羅斯伯爵是首位察覺它宏偉䖵旋形狀的人
151
00：11：02，640－－＞00：11：08，400
那是一個跟我們的銀河系一樣的星系，有著交錯的暗淡塵埃與發亮氣體
152
00：11：08，520－－＞00：11：12，400
上千億顆恆星，沒有人知道
153
00：11：12，520－－＞00：11：16，560
那裡會不會有像地球一樣的行星
154
00：11：18，920－－＞00：11：24，920
望遠鏡，已經成為我們探索宇宙的主力艦了
155
00：11：29，720－－＞00：11：34，080
2．愈大愈好
156
00：11：36，080－－＞00：11：38，480
在晚上，你的眼睛會適應黑暗
157
00：11：38，560－－＞00：11：42，640
瞳孔擴大，讓更多的光進入眼睛
158
00：11：42，720－－＞00：11：47，880

```
因此你能夠看到更暗的物體和恆星
1 5 9
00:11:47,960 --> 00:11:51,720
現在,假設你的瞳孔宽達一米
160
00:11:51,800 --> 00:11:55,960
雖然你的樣子一定很奇怪,但你卻有著超凡的視力
1 6 1
00:11:56,000 --> 00:11:59,400
而這就是望遠鏡所能做到的效果
162
00:12:01,880 --> 00:12:04,640
望遠鏡就像一個漏斗
163
00:12:04,720 --> 00:12:10,240
它的主鏡用來收集星光,然後一併送進你的眼睛
164
00:12:13,080 --> 00:12:17,800
所以愈大的望遠鏡主鏡,讓你能看到愈暗的物體
1 6 5
00:12:17,880 --> 00:12:20,720
因此, 尺寸的確主宰一切
166
00:12:20,800 --> 00:12:23,400
但到底能做多大的望遠鏡呢?
167
00:12:23,480 --> 00:12:26,400
如果是一台折射鏡的話,就不能太大
168
00:12:29,480 --> 00:12:32,720
因為星光要穿過透鏡
1 6 9
00:12:32,800 --> 00:12:36,080
所以你只能托著透鏡的邊緣
170
00:12:36,160 --> 00:12:41,880
如果透鏡太大就會很重,會因為自身的重量而變形
1 7 1
00:12:41,960 --> 00:12:45,640
這意味著影像也會被扭曲
172
00:12:47,400 --> 00:12:54,320
有史以來最大的折射鏡是1897年在芝加哥.葉凱士天文台建造的
173
00:12:54,400 --> 00:12:57,480
它的口徑雖然只有一米多一點
1 7 4
```

```
00:12:57,560 --> 00:13:02,080
但鏡筒卻不可思議的長達18米
175
00:13:02,160 --> 00:13:08,720
當葉凱士望遠鋧落成,折射式望遠鏡的建造技術也已經接近極限了
176
00:13:08,800 --> 00:13:10,880
要更大的望遠鏡嗎?
177
00:13:10,960 --> 00:13:12,800
用反射鏡吧
178
00:13:17,080 --> 00:13:23,080
在反射式望遠鏡中,由於星光抵達反射鏡後就會反彈,不會穿透鏡片
179
00:13:23,160 --> 00:13:29,400
所以能製造比透鏡薄更多的鏡片,而且能從背後支摚鏡片
180
00:13:29,480 --> 00:13:34,640
因此,反射鏡的口徑能比透鏡大很多
181
00:13:35,640 --> 00:13:39,720
一個世紀以前,大反射鏡來到了加州南部
182
00:13:39,800 --> 00:13:44,880
那時,威爾遜山是一個在聖加百利山脈中較為偏遠的山峰
183
00:13:44,960 --> 00:13:49,080
天空澄明,夜晚漆黑
184
00:13:49,160 --> 00:13:53,640
喬治.艾勒里·海爾就在這裡,首先建造了一台1.5米口徑的望遠鏡
185
00:13:53,720 --> 00:13:58,400
雖然口徑小於羅斯伯爵那退役的龐然大物,但卻有更佳的品質
186
00:13:58,480 --> 00:14:02,160
而且地點更佳
187
00:14:02,240 --> 00:14:07,640
海爾說服了當地的商人約翰.胡克,斥資興建口徑2.5米的儀器
188
00:14:07,720 --> 00:14:12,560
數以噸計的玻璃和鉚接鋼材被拖上威爾遜山
189
00:14:12,640 --> 00:14:16,000
胡克望遠鏡終於在1917年建成
```

190
00：14：16，080－－＞00：14：20，240
並保持了全世界最大望遠鏡的地位達三十年之久
191
00：14：20，320－－＞00：14：25，400
一具宇宙大砲即將對準宇宙發動攻擊
192
00：14：28，480－－＞00：14：31，080
的確，它發起了攻擊
193
00：14：31，160－－＞00：14：34，240
新望遠鏡的口徑不可思議，
194
00：14：34，280－－＞00：14：37，240
觀看影像的方式也出現了轉變
195
00：14：37，280－－＞00：14：40，800
天文學家不再用肉眼從望遠鏡的目鏡觀看
196
00：14：40，880－－＞00：14：45，960
而利用攝影底片置於底部，用好幾小時來收集星光
197
00：14：46，000－－＞00：14：50，800
從來也沒有人看過那麼深遂的宇宙
198
00：14：50，880－－＞00：14：55，160
原來在螺旋星雲中，佈滿了一顆顆的恆星
199
00：14：55，240－－＞00：14：59，560
它們就像我們身處的銀河系，也是一個龐大的恆星系統嗎？
200
00：14：59，640－－＞00：15：03，800
在仙女座大星雲中，愛德溫．哈柏發現了一類
201
00：15：03，880－－＞00：15：07，400
亮度準確變化的週期性變星
202
00：15：07，480－－＞00：15：11，720
從這個觀測，他推斷出仙女座星雲到我們的距離
203
00：15：11，800－－＞00：15：15，960
差不多有100萬光年
204
00：15：16，080－－＞00：15：22，720
螺旋狀星雲，像仙女座星雲，顯然是一個獨立的個別星系
205
00：15：24，480－－＞00：15：27，320
但這並不是唯一一項不可思議的事情

206
00：15：27，400－－＞00：15：32，000
這些星系大部份都正離開銀河系
207
00：15：32，080－－＞00：15：37，640
在威爾遜山上，哈柏發現近的星系以較慢的速度離開
208
00：15：37，640－－＞00：15：42，480
而遠的星系呢，離開的速度要快得多
209
00：15：42，560－－＞00：15：43，720
結論是？
210
00：15：43，800－－＞00：15：46，560
宇宙正在不斷膨脹
211
00：15：46，640－－＞00：15：53，400
胡克望遠鏡成就了科學家在二十世紀影響最為深遠的天文發現
212
00：15：56，080－－＞00：16：00，640
感謝望遠鏡的出現，讓我們能追溯宇宙的歷史
213
00：16：00，720－－＞00：16：04，880
不到140億年前，宇宙誕生了
214
00：16：04，960－－＞00：16：09，240
一個時間與空間，物質與能量的巨大爆炸，稱為
215
00：16：09，280－－＞00：16：11，560
「大霹雿」
216
00：16：11，640－－＞00：16：17，480
在濃椆的原始宇宙中，微小的量子起伏產生了密度較高的地區
217
00：16：17，560－－＞00：16：20，160
星系就在這些地區凝聚
218
00：16：20，240－－＞00：16：23，800
它們有著各種各樣的大小與形狀
219
00：16：26，560－－＞00：16：30，400
在恆星的核心裡，核融合產生了新的原子
220
00：16：30，480－－＞00：16：34，880
碳，氧，鐵，金
221
00：16：34，960－－＞00：16：39，640

```
超新星爆發把這些重元素抛回太空
2 2 2
00:16:39,720 --> 00:16:43,080
又成為新一代㼡星形成的原始材料
223
00:16:43,160 --> 00:16:44,800
甚至包括行星!
224
00:16:46,880 --> 00:16:54,880
在某年某地,以某種方式,簡單的有機分子演化成了生物
225
00:16:54,960 --> 00:17:00,560
在不斷演化的宇宙中,生命是一個奇蹟
226
00:17:00,640 --> 00:17:02,880
我們是星塵
2 2 7
00:17:02,960 --> 00:17:07,000
這一個全新的觀點和廣泛流傳的故事
2 2 8
00:17:07,080 --> 00:17:11,160
都是由望遠鏡帶給我們的
2 2 9
00:17:11,240 --> 00:17:15,640
想想看:如果沒有望遠鏡,我們現在仍然只知道六顆行星
230
00:17:15,720 --> 00:17:18,160
一個月球和幾千顆恆星
231
00:17:18,240 --> 00:17:22,400
天文學會停留在嬰兒時期
232
00:17:23,640 --> 00:17:27,480
像埋藏的寶藏。自上古以來,宇宙的深處
233
00:17:27,560 --> 00:17:30,000
一直召喚著喜愛探索的人
2 3 4
00:17:30,080 --> 00:17:35,480
從王子到君主,政界或工業界,都和科學家一樣
2 3 5
00:17:35,560 --> 00:17:40,240
感受到浩潮太空的誘惑。然而透過儀器的投入
236
00:17:40,280 --> 00:17:45,400
使得探索的領域迅速地擴大
2 3 7
```

```
00:17:59,800 --> 00:18:02,640
喬治·艾勒里•海爾有一個最終的夢想
238
00:18:02,720 --> 00:18:06,960
就是建造一台比以前的紀錄還要大兩倍的望遠鏡
239
00:18:07,000 --> 00:18:10,880
讓我們來看二十世紀中年高德劭的老祖母
240
00:18:10,960 --> 00:18:15,880
在帕洛瑪山五米口徑的海爾望遠鏡
241
00:18:15,960 --> 00:18:20,560
可動重量超過500噸,但卻能巧妙地平衡
242
00:18:20,640 --> 00:18:24,640
使得它的移動就像芭蕾舞孃般優雅
243
00:18:24,720 --> 00:18:30,240
它那重40噸的鏡片,能夠影示出比人眼所見還要暗四千萬倍的星體
244
00:18:30,280 --> 00:18:35,240
海爾望遠鏡在1948年建成,為我們提供了清晰的
245
00:18:35,280 --> 00:18:38,800
行星,星團,星雲,和星系的影像
246
00:18:41,080 --> 00:18:44,960
巨大的木星,還有它眾多的衛星
247
00:18:45,080 --> 00:18:49,080
令人驚嘆的火焰星雲
248
00:18:49,160 --> 00:18:54,240
在獵戶座大星雲中微薄的氣體...
2 4 9
00:18:59,880 --> 00:19:02,080
想要更大的望遠鏡嗎?
250
00:19:02,160 --> 00:19:06,240
楒,蘇聯的天文學家在70年代末期作過嫦試
251
00:19:06,280 --> 00:19:10,640
他們在高加索山脈的高處,建造了「巨型地平裝置望遠鏡」
252
00:19:10,720 --> 00:19:14,880
使用了巨大的6米主鏡
```

```
253
00:19:14,960 --> 00:19:17,640
可是卻從來沒有達到人眭對它的期望
254
00:19:17,720 --> 00:19:21,720
它太大, 太貴,而太複雜
255
00:19:21,800 --> 00:19:24,960
那望遠鏡建造者就要放棄了嗎?
256
00:19:25,080 --> 00:19:28,480
他們要埋葬建造更大望遠鏡的夢想嗎?
257
00:19:28,560 --> 00:19:31,960
望遠鏡的歷史就這麼早要結束了嗎?
258
00:19:32,080 --> 00:19:33,400
嗯, 當然不是
259
00:19:33,480 --> 00:19:36,480
今天我們有十米口徑的望遠鏡正在運作
260
00:19:36,560 --> 00:19:39,160
還有更大的在籌劃
2 6 1
00:19:39,240 --> 00:19:40,720
解決的辦法是?
262
00:19:40,800 --> 00:19:42,640
新的技術!
2 6 3
00:19:44,000 --> 00:19:48,760
3. 新的技術
264
00:19:48,960 --> 00:19:52,800
就像現代汽車的外型早已不像福特T型車,
265
00:19:52,880 --> 00:19:56,280
現代的望遠鏡跟以往的也完全不同
266
00:19:56,360 --> 00:19:58,680
像是五米口徑的海爾望遠鏡
267
00:19:58,760 --> 00:20:01,880
舉個例子,它們的架台變得更為小巧
268

269
00：20：05，920－－＞00：20：09，720
總是和地球的自轉軸平行
270
00：20：09，800－－＞00：20：13，480
要追蹤星空的運動，望遠鏡只需要單純地
271
00：20：13，560－－＞00：20：18，200
以地球自轉的速度繞着這個轉軸轉動

272
00：20：18，280－－＞00：20：21，160
很容易，但需要很大的空間
273
00：20：21，240－－＞00：20：26，040
現代的地平裝置，相對的就小得多
274
00：20：26，080－－＞00：20：30，440
使用這種架台，操作方式就好像一座大炮
275
00：20：30，480－－＞00：20：35，240
只要選好方位，決定仰角就可以了
276
00：20：35，320－－＞00：20：38，640
這裡最大的問題在於追蹤星空的運動
277
00：20：38，720－－＞00：20：44，240
望遠鏡需要用不同的速度讓雨個轉軸一起轉動
278
00：20：44，320－－＞00：20：50，720
而這必須依靠電腦控制才能達到目的
279
00：20：50，800－－＞00：20：52，840
小的架台，建造起來便宜得多
280
00：20：52，920－－＞00：20：57，520
此外，更可以放在小一點的圓頂裡，進一步降低建造成本
281
00：20：57，600－－＞00：21：00，320
也提升了影像的品質
282
00：21：00，400－－＞00：21：03，800
拿夏威夷山上兩個「凱克望遠鏡」為例
283
00：21：03，880－－＞00：21：06，600
雖然它們的10米主鏡比海爾望遠鏡還要大上兩倍
284
00：21：06，680－－＞00：21：10，440
```

但是它們卻可以放進
285
00:21:10,520 --> 00:21:13,240
比帕洛瑪山上更小的圓頂之內
286
00:21:15,080 --> 00:21:17,440
望遠鏡的鏡片也在進化
287
00:21:17,520 --> 00:21:19,120
以往的鏡片又厚又重
288
00:21:19,200 --> 00:21:21,840
而現代的䜪變得又薄又輕
289
00:21:21,920 --> 00:21:26,800
好幾公尺寬的鏡肧在不斷旋轉的巨大鍋爐中鑄造
290
00:21:26,880 --> 00:21:30,320
而它們的厚度還小於20公分
2 9 1
00:21:30,400 --> 00:21:32,960
一個複雜而細絰的支撐結構,能夠防止
292
00:21:33,080 --> 00:21:35,200
薄薄的鏡片,因為自身的重量而斷裂
293
00:21:35,280 --> 00:21:39,120
由電腦控制的活塞和推拉桿,也幫助鏡片
294
00:21:39,200 --> 00:21:40,840
保持完美的形狀
2 9 5
00:21:43,400 --> 00:21:45,520
這個系統稱作「主動光學」
296
00:21:45,600 --> 00:21:49,840
用來抵消由重力, 風力, 和溫差
297
00:21:49,920 --> 00:21:54,560
對主鏡所造成的任何變形
298
00:21:54,640 --> 00:21:58,240
那薄鏡片的重量也比較輕
299
00:21:58,320 --> 00:22:01,440
代表着整個支撑結構,包括架台䧶置
300

```
```

00:22:01,560 --> 00:22:03,440
可以更小巧
301
00:22:03,520 --> 00:22:05,560
也更便宜!
302
00:22:05,640 --> 00:22:08,360
這個是3.6米口徑的「新技術望遠鏡」
303
00:22:08,440 --> 00:22:11,760
由歐洲天文學家在 80年代末建造的
304
00:22:11,840 --> 00:22:14,840
它為望遠鏡的各項新技術
305
00:22:14,920 --> 00:22:16,120
提供了測試平台
306
00:22:16,200 --> 00:22:20,960
甚至連外罩跟傳統的天文圓頂也完全不一樣
307
00:22:21,080 --> 00:22:24,240
新技術望遠鏡非常成功
308
00:22:24,320 --> 00:22:27,280
現在到了打破6米口徑障礙的時候了
309
00:22:27,600 --> 00:22:31,400
凱亞峰天文台坐落在太平洋上的最高點
310
00:22:31,480 --> 00:22:34,960
海拔四千二百公尺
311
00:22:36,960 --> 00:22:41,120
遊客在夏威夷的海灘上享受陽光和衝浪
312
00:22:41,200 --> 00:22:44,520
但遠高於他們之上, 天文學家冒著刺骨的低溫
313
00:22:44,600 --> 00:22:51,160
和高山症,只為了尋找解開宇宙奧秘的答案
314
00:22:51,240 --> 00:22:54,120
凱克望遠鏡是世界上數一數二的大型望遠鏡
315
00:22:54,200 --> 00:22:59,120
主鏡口徑都是10米,而且非常薄

```
```

316
00:22:59,200 --> 00:23:04,040
有如浴室鋪滿瓷磚一樣,每面主鏡都是由36塊六角形面鏡組合而成
317
00:23:04,120 --> 00:23:07,480
每塊的精度都控制在奈米範圍內
318
00:23:07,560 --> 00:23:11,200
這些是真的獻身於觀測星空的巨人
319
00:23:11,280 --> 00:23:14,120
科學界中的泰山北斗
320
00:23:14,200 --> 00:23:16,600
凱亞峰山上夜幕低垂
321
00:23:16,680 --> 00:23:21,720
凱克望遠鏡開始收集來自宇宙深處的光子
322
00:23:21,800 --> 00:23:24,520
結合兩個望遠鏡,有效口徑要
323
00:23:24,600 --> 00:23:27,440
比以往所有的望遠鏡都要大得多
324
00:23:27,520 --> 00:23:30,360
今晚會有甚麼收穫呢?
325
00:23:34,680 --> 00:23:39,520
在數十億光年外一對碰撞中的星系?
326
00:23:39,600 --> 00:23:45,320
一顆垂死的恆星,用盡最後一口氣呼出的行星狀星雲?
327
00:23:45,400 --> 00:23:51,040
還是一顆可能擁有生命的太陽系外行星?
328
00:23:51,120 --> 00:23:55,920
在地球上最乾燥的地方 - 阿塔卡瑪沙漠,帕拉那山上
329
00:23:55,960 --> 00:24:00,040
我們看到了迄今為止所建造最大的天文儀器:
330
00:24:00,120 --> 00:24:03,560
歐洲的「超大望遠鏡」(VLT)
331
00:24:16,200 --> 00:24:19,520
VLT實際上由四座望遠鏡組成

```

332
00：24：19，600－－＞00：24：22，760
每座都有一塊龐大的 8.2 米鏡片
333
00：24：22，840－－＞00：24：24，120
「Antu」
334
00：24：24，200－－＞00：24：25，240
「Kueyen」
335
00：24：25，320－－＞00：24：26，320
「Melipal」
336
00：24：26，400－－＞00：24：27，760
「Yepun」
337
00：24：27，840－－＞00：24：33，440
是智利印第安土語中太陽，月亮，南十字以及金星的意思
338
00：24：33，520－－＞00：24：37，800
龐大的主鏡在德國鑄造，在法國進行抛光，再用船運到智利
339
00：24：37，880－－＞00：24：41，240
然後徐徐地運送過沙漠
340
00：24：41，320－－＞00：24：44，960
日落後，天文台的外罩打開
341
00：24：45，040－－＞00：24：48，560
星光落到VLT的鏡片上
342
00：24：49，280－－＞00：24：52，080
帶來了新發現
343
00：24：55，920－－＞00：24：58，160
一束雷射劃破夜空
344
00：24：58，240－－＞00：25：00，680
在大氣中投射出一顆人造的星
345
00：25：00，760－－＞00：25：03，840
就在頭上90公里的位置
346
00：25：03，920－－＞00：25：06，920
波前感測器量度導星的影像
347
00：25：06，960－－＞00：25：09，120

如何受大氣擾動而變形
```

348
00:25:09,200 --> 00:25:12,960
接着高速電腦指示可變形的鏡片
349
00:25:13,040 --> 00:25:15,800
改變形狀來修正影像的變形
350
00:25:15,880 --> 00:25:18,960
實際上就是讓恆星停止閃爍
351
00:25:19,040 --> 00:25:22,600
這稱為「自適應光學」, 是現代
352
00:25:22,680 --> 00:25:24,320
天文學中的絕妙戲法
353
00:25:24,400 --> 00:25:28,840
沒有它,我們所見的宇宙會因為大氣的擾動而變得模糊
354
00:25:28,920 --> 00:25:32,880
但有了它,影像就變得非常敏銳
355
00:25:35,480 --> 00:25:39,480
另一個光學魔法是「干涉測量術」
356
00:25:39,560 --> 00:25:43,360
是把來自兩台獨立的望遠鏡,所接收到的光線
357
00:25:43,440 --> 00:25:46,640
合而為一,但同時保持着
358
00:25:46,720 --> 00:25:49,320
光波間的相對位移
359
00:25:49,400 --> 00:25:53,160
如果精度能做得準確,結果就像讓兩台望遠鏡
3 6 0
00:25:53,240 --> 00:25:56,600
形成一台單一且龐大的反射鏡一樣
361
00:25:56,680 --> 00:25:59,920
口徑等於兩鏡之間的距離
362
00:25:59,960 --> 00:26:04,040
實際上,干涉測量為望遠鏡提供了老鷹一般的視力
3 6 3

```
```

00:26:04,120 --> 00:26:07,600
它讓小型望遠鏡可以得到原本
364
00:26:07,680 --> 00:26:12,440
只能在大型望遠鏡中才能得到的解析力
365
00:26:12,520 --> 00:26:15,600
在凱亞峰山上的這對凱克望遠鏡
366
00:26:15,680 --> 00:26:17,520
經常結合成干涉儀
367
00:26:17,600 --> 00:26:21,440
至於VLT, 4台望遠鏡能同時結合
368
00:26:21,520 --> 00:26:24,760
還有一些小型的輔助望遠鏡也能
369
00:26:24,840 --> 00:26:28,880
加入這個行列,使得影像更加清晰
370
00:26:29,840 --> 00:26:33,400
全球還有其他的大型望遠鏡
371
00:26:33,480 --> 00:26:37,480
「䒜」望遠鏡, 「雙子星北望遠鏡」在凱亞峰
372
00:26:37,560 --> 00:26:42,240
「雙子星南望遠鏡」, 「麥哲倫望遠鏡」在智利
373
00:26:42,320 --> 00:26:46,280
「大型隻筒望遠鏡」在亞利桑納州
374
00:26:48,200 --> 00:26:50,800
它們都建在最佳的觀測點
375
00:26:50,840 --> 00:26:53,720
高曠, 乾燥, 清澈, 及漆黑
376
00:26:53,840 --> 00:26:56,640
它們的眼睛像游泳池一樣大
377
00:26:56,760 --> 00:27:00,400
全部都配搭「自適應光學」以抗衡
378
00:27:00,440 --> 00:27:02,080
大氣的影響

```
```

379
00:27:02,200 --> 00:27:05,960
有時候它們的解析力可以達巨型怪獸的程度
380
00:27:06,040 --> 00:27:08,640
這都要感謝干涉測量技術
381
00:27:09,680 --> 00:27:11,800
這是它們所展示給我們的
382
00:27:11,920 --> 00:27:13,400
行星
383
00:27:16,600 --> 00:27:18,240
星雲
384
00:27:19,360 --> 00:27:23,960
一些恆星的真實大小與被擠壓的形狀
385
00:27:23,960 --> 00:27:27,160
一顆冰冷的行星環繞着一顆棕矮星運行
386
00:27:27,200 --> 00:27:31,480
以及巨星環繞着銀河系的核心盤旋
387
00:27:31,600 --> 00:27:36,720
它們被一個超大質量黑洞的重力所操控
388
00:27:36,840 --> 00:27:40,400
我們現在已經遠遠超越伽(《<Y)俐略的年代了
389
00:27:40,000 --> 00:27:44,760
4.由銀到矽
390
00:27:45,840 --> 00:27:49,000
四百年前, 當伽利略.伽利萊想和其他人分享
391
00:27:49,120 --> 00:27:53,000
他在望遠鏡中所見的影像,他需要用紙筆畫下
392
00:27:53,120 --> 00:27:56,240
滿佈坑洞的月面
393
00:27:56,360 --> 00:28:00,400
舞動的木星衛星
394
00:28:00,520 --> 00:28:02,160
太陽黑子

```

395
00：28：02，280－－＞00：28：04，160
或是獵戶座中的眾多恆星
396
00：28：04，280－－＞00：28：06，720
他將這些圖，編印成了一本小書
397
00：28：06，760－－＞00：28：08，400《星際信使》

398
00：28：08，440－－＞00：28：10，800
這是當時他與其他人分享這些發現
399
00：28：10，920－－＞00：28：12，400
的唯一途徑
400
00：28：12，440－－＞00：28：16，640
在超過兩個世紀的時間裡，天文學家也必須是藝術家
401
00：28：16，760－－＞00：28：19，000凝視著目鏡，詳細地畫下

402
00：28：19，120－－＞00：28：20，960
他們所見的影像
403
00：28：21，040－－＞00：28：23，080
月球上荒涼的景色
404
00：28：23，200－－＞00：28：25，960
木星大氣中的風暴
405
00：28：26，040－－＞00：28：29，000
遙遠星雲中，宛如神秘面紗般的氣體
406
00：28：29，120－－＞00：28：32，320
但有時他們會過度詮釋所見的景象
407
00：28：32，440－－＞00：28：36，560
在火星表面上的黑暗線條，曾被誤認為是運河
408
00：28：36，680－－＞00：28：39，880
讓人們以為這顆紅色行星上有高智生物
409
00：28：39，960－－＞00：28：43，480
現在我們知道，那些「運河」不過是光學上的假象
410
00：28：43，600－－＞00：28：47，160
```

天文學家真正需要的,是一個客觀的方法,用來記錄
4 1 1
00:28:47,280 --> 00:28:51,480
望遠鏡收集到的光線,而不是藉由
4 1 2
00:28:51,520 --> 00:28:54,480
他們的腦袋和畫筆,來留下這些訊息
4 1 3
00:28:54,600 --> 00:28:57,400
照相技術的出現,成為了救星
4 1 4
00:28:58,760 --> 00:29:01,160
月球的第一張銀版相片
4 1 5
00:29:01,200 --> 00:29:03,880
是亨利.德雷伯在1840年所拍攝的
4 1 6
00:29:03,920 --> 00:29:07,240
雖然當時照相技術才發展不到15年,但天文學家
4 1 7
00:29:07,360 --> 00:29:10,880
已經能夠利用這項革命性的種種可能
4 1 8
00:29:10,920 --> 00:29:13,080
照相技術是怎麼運作的呢?
4 1 9
00:29:13,120 --> 00:29:17,160
嗯,在底片上靈敏的感光乳劑裡
4 2 0
00:29:17,280 --> 00:29:19,400
含有細小的卤化銀顆粒
4 2 1
00:29:19,440 --> 00:29:22,160
感光時,它們會轉變成黑色
4 2 2
00:29:22,200 --> 00:29:24,800
所以會呈現出一幅黑白相反的星空影像
4 2 3
00:29:24,920 --> 00:29:28,080
星星是暗的,而背景是亮的
4 2 4
00:29:28,200 --> 00:29:31,560
但照相底片真正的好處是
4 2 5
00:29:31,680 --> 00:29:33,960
它能夠連續數小時長時間地曝光

```
426
```

00:29:34,040 --> 00:29:36,720
若你只用肉眼觀察夜空
4 2 7
00:29:36,760 --> 00:29:39,640
一旦適應了黑暗,即使你看得再久
4 2 8
00:29:39,680 --> 00:29:42,320
也不會看到更多的星星
4 2 9
00:29:42,440 --> 00:29:45,240
但照相底片卻可以做到
4 3 0
00:29:45,360 --> 00:29:48,480
你可以連續收集, 畾加數小時的光線
4 3 1
00:29:48,600 --> 00:29:52,880
所以曝光愈久,底片上就會䫛現出更多
4 3 2
00:29:52,920 --> 00:29:54,160
更多
4 3 3
00:29:54,200 --> 00:29:55,240
更多的星星
4 3 4
00:29:55,360 --> 00:29:57,320
4 3 5
00:29:58,360 --> 00:30:02,000
在1950年代,我們利用帕洛瑪天文台的施密特望遠鏡
4 3 6
00:30:02,120 --> 00:30:05,160
攝了整個北天星空
4 3 7
00:30:05,280 --> 00:30:10,080
得到了將近2000張照相底片,每張曝光時間長達一個小時
4 3 8
00:30:10,120 --> 00:30:12,960
真是一項珍貴的寶藏
4 3 9
00:30:12,960 --> 00:30:17,080
照相技術將觀測天文學轉化為一門客觀, 可測量,而且可以複製的
440
00:30:17,200 --> 00:30:21,480
真正的科學
4 4 1
00:30:21,600 --> 00:30:23,240
可是銀的反應較慢

```
```

4 4 2
00:30:23,280 --> 00:30:25,480
你必須要很有耐心
443
00:30:27,120 --> 00:30:29,880
數位革命改變了一切
4 4 4
00:30:29,920 --> 00:30:31,640
矽取代了銀
4 4 5
00:30:31,760 --> 00:30:34,480
電腦像素取代了卤化銀的細小顆粒
4 4 6
00:30:36,360 --> 00:30:40,000
現在就算是消費型相機,我們也不再使用照相底片了
447
00:30:40,120 --> 00:30:43,560
而是將影像記錄到一片感光的晶片上
448
00:30:43,600 --> 00:30:47,800
也就是電荷耦合元件,簡稱CCD
449
00:30:47,920 --> 00:30:51,560
專業級CCD的效率非常高
4 5 0
00:30:51,680 --> 00:30:54,640
為了進一步地提升靈敏度,得用液態氮
4 5 1
00:30:54,680 --> 00:30:57,960
將它們冷卻到遠低於冰點的程度
4 5 2
00:30:58,040 --> 00:31:00,720
幾乎每一顆光子都能被記錄下來
4 5 3
00:31:00,760 --> 00:31:05,640
這大大減少了曝光所需要的時間
4 5 4
00:31:05,760 --> 00:31:09,480
帕洛瑪天文台過去要花一小時所做的巡天觀測
455
00:31:09,600 --> 00:31:13,160
現在藉由CCD,只要用更小的望遠鏡
4 5 6
00:31:13,200 --> 00:31:15,560
就可以在短短的數分鐘內完成
457
00:31:15,600 --> 00:31:18,080
「矽革命」還沒有結束

```

458
00：31：18，200－－＞00：31：21，080
天文學家已經建造了擁有數億像素的
459
00：31：21，200－－＞00：31：23，560
大型CCD相機
460
00：31：23，600－－＞00：31：26，320
讓我們拭目以待吧
461
00：31：28，120－－＞00：31：32，560
數位影像最大的好處就是，嗯，它們是數位的
462
00：31：32，600－－＞00：31：35，800
我們可以隨時在電腦上處理這些影像
463
00：31：35，840－－＞00：31：38，800
天文學家利用專門的軟體去處理
464
00：31：38，840－－＞00：31：40，880
他們所得到的觀測影像
465
00：31：40，880－－＞00：31：45，080
藉由影像的延展或加強對比，即使是天體中最微妙的特徵
466
00：31：45，200－－＞00：31：47，640
也能夠一覽無遺
467
00：31：47，760－－＞00：31：51，240
利用彩色編碼能多強調並顯現出
468
00：31：51，280－－＞00：31：53，640
肉眼難以辨識的結構
469
00：31：53，680－－＞00：31：57，880
除此而外，如果合併許多張不同顏色濾鏡
470
00：31：57，920－－＞00：32：00，400
所拍攝的同一個天體影像，人們就可以
471
00：32：00，520－－＞00：32：04，320
創造出交融科學與藝術的
472
00：32：04，440－－＞00：32：06，720
壯麗作品
473
00：32：06，840－－＞00：32：09，880

\section*{你也可以因為天文學的數位化而受惠}

474
00：32：09，960－－＞00：32：13，960探究和享受這些令人讚嘆的宇宙影像

475
00：32：13，960－－＞00：32：15，800竟然是如此容易

476
00：32：15，920－－＞00：32：20，080
我們只要輕輕的驅動滑鼠，就可以看到了！
477
00：32：20，680－－＞00：32：24，160裝備了靈敏電子探測器的自動望遠鏡

478
00：32：24，280－－＞00：32：27，800
正不斷地守望着天空
479
00：32：27，920－－＞00：32：30，880
在新墨西哥州的史隆望遠鏡已經拍攝並編錄了
480
00：32：30，960－－＞00：32：34，000
超過一億個天體
481
00：32：34，120－－＞00：32：38，160
測量了一百萬個星系與我們的距離
482
00：32：38，280－－＞00：32：41，480
還發現了十萬個新的類星體
483
00：32：41，520－－＞00：32：44，000
但是只有一個巡天計畫是不夠的
484
00：32：44，120－－＞00：32：47，400
我們的宇宙正不斷地在變化著
485
00：32：47，520－－＞00：32：51，240
冰彗星來了又去
486
00：32：51，280－－＞00：32：53，640
碎屑沿途散落
487
00：32：53，760－－＞00：32：56，720
小行星擦身而過
488
00：32：56，840－－＞00：33：00，560
遙遠的行星環繞著母恆星運轉，短暫地
```

00:33:00,680 --> 00:33:02,880
阻擋了恆星的一小部份光芒
4 9 0
00:33:02,960 --> 00:33:08,800
超新星爆炸,其他地方有新的恆星誕生
4 9 1
00:33:08,840 --> 00:33:17,960
脈衝星閃爍著, 伽瑪射線爆發...黑洞吸積成長
4 9 2
00:33:18,040 --> 00:33:21,720
為了追蹤這些在大自然上演的精彩戲碼,天文學家
4 9 3
00:33:21,840 --> 00:33:25,240
希望每年都能進行全天的巡天觀測
4 9 4
00:33:25,360 --> 00:33:26,840
或是每個月
4 9 5
00:33:26,920 --> 00:33:28,640
甚至是每星期兩次
4 9 6
00:33:28,680 --> 00:33:33,800
至少這是「大巡天望遠鏡」雄心勃勃的目標
4 9 7
00:33:33,920 --> 00:33:39,400
如果能在2015年完成的話,它的三十億像素相機將會
498
00:33:39,440 --> 00:33:42,080
打開一扇宇宙的直播窗口
4 9 9
00:33:42,200 --> 00:33:45,960
這座反射式望遠鏡將遠遠超過天文學家的夢想
5 0 0
00:33:46,040 --> 00:33:51,080
每三個晚上就能掃描拍攝幾乎整個夜空
501
00:33:56,000 --> 00:34:00,760
5. 見所不見
502
00:34:02,360 --> 00:34:05,080
當你聽着喜愛的音樂時,你的耳朵所接收到的
5 0 3
00:34:05,160 --> 00:34:08,800
音頻範圍其實很宽, 由隆隆的重低音
504
00:34:08,920 --> 00:34:12,120
到相當刺耳的高頻

```
```

5 0 5
00:34:12,200 --> 00:34:14,960
現在,想像一下你只能聽到非常局限
506
00:34:15,360 --> 00:34:16,920
的音頻範圍
5 0 7
00:34:16,960 --> 00:34:19,520
那你會錯過許多美好的東西!
508
00:34:19,600 --> 00:34:23,000
但這正是天文學家所實際面對的情况
5 0 9
00:34:23,080 --> 00:34:26,160
我們的眼睛只能感應到光線中一段
5 1 0
00:34:26,240 --> 00:34:29,000
非常狹窄的範圍 - 那就是可見光
5 1 1
00:34:29,080 --> 00:34:31,560
也就是說,我們完全看不到
512
00:34:31,640 --> 00:34:33,600
其他形式的電磁波
513
00:34:33,680 --> 00:34:36,640
然而, 宇宙中許多天體都會輻射出
514
00:34:36,720 --> 00:34:39,960
其他波段的電磁波
515
00:34:40,040 --> 00:34:43,760
例如,在1930年代意外地發現
516
00:34:43,840 --> 00:34:47,240
來自太空深處的無線電波訊號
517
00:34:47,320 --> 00:34:49,960
其中一些電波頻率和你喜愛的電台
518
00:34:50,040 --> 00:34:53,160
頻率是一樣的,只是訊號微弱到
519
00:34:53,240 --> 00:34:55,280
讓我們聽不到任何廣播內容
520
00:34:56,520 --> 00:34:59,960
要調校到這個宇宙「電台」

```
```

521
00:35:00,040 --> 00:35:02,560
我們需要相關的接收器:電波望遠鏡
522
00:35:02,680 --> 00:35:06,960
它就是一座碟型天線,只不過它接收的是最長的波段
523
00:35:07,040 --> 00:35:10,080
碟面的作用,好像是光學望遠鏡的主鏡
524
00:35:10,200 --> 00:35:14,400
但是無線電波的波長比可見光長很多
525
00:35:14,440 --> 00:35:17,240
碟型天線的表面不必要
526
00:35:17,360 --> 00:35:19,000
像光學鏡片那樣平滑
527
00:35:19,120 --> 00:35:21,640
因此,建造一座大型的電波望遠鏡
528
00:35:21,680 --> 00:35:26,800
比建造一座大型的光學望遠鏡容易得多
5 2 9
00:35:26,840 --> 00:35:30,960
而且,在電波波段,更容易進行干涉測量
5 3 0
00:35:30,960 --> 00:35:34,080
那是為了提升觀測上的細節
531
00:35:34,120 --> 00:35:37,960
把來自2台不同望遠鏡的光合併
532
00:35:38,040 --> 00:35:41,560
使它們像是一座龐大的單一碟型天線
5 3 3
00:35:41,600 --> 00:35:44,640
例如,位於新墨西哥州的特大天線陣
534
00:35:44,680 --> 00:35:49,720
是由 27台獨立, 直徑25米的天線組成
535
00:35:49,760 --> 00:35:52,960
每座天線都能獨立移動
536
00:35:53,040 --> 00:35:56,400

```
```

當天線陣展開到最大時, 就像是一個
5 3 7
00:35:56,520 --> 00:36:00,800
口徑寬達36公里的龐大碟形天線
538
00:36:00,920 --> 00:36:03,560
那麼在電波下的宇宙是什麼模樣?
5 3 9
00:36:03,680 --> 00:36:08,000
嗯,首先,我們的太陽在電波波段下㬤得非常明亮
540
00:36:08,120 --> 00:36:10,720
我們銀河系的中心也是如此
5 4 1
00:36:10,760 --> 00:36:12,400
還不只這樣
542
00:36:12,520 --> 00:36:16,480
脈衝星是㼡星死後遺留的高密度天體
543
00:36:16,520 --> 00:36:18,640
發射出非常狹窄的電波光束
544
00:36:18,680 --> 00:36:21,800
另外,它們的自轉速度可以高達
545
00:36:21,840 --> 00:36:23,720
每秒數百次
546
00:36:23,760 --> 00:36:27,800
所以,脈衝星看上去就像一座旋轉中的電波燈塔
547
00:36:27,920 --> 00:36:31,320
我們所看見的,是一連串非常有規律而快速
548
00:36:31,360 --> 00:36:34,320
的短促電波脈衝
549
00:36:34,440 --> 00:36:36,640
脈衝星因而得名
50
00:36:36,680 --> 00:36:39,320
電波源「仙后座A」事實上是
551
00:36:39,440 --> 00:36:43,640
一顆在17世紀時爆發的超新星遺跡
5 5 2

```
```

00:36:43,680 --> 00:36:48,240
半人馬座A, 天鵝座A與室女座A
553
00:36:48,280 --> 00:36:50,640
這些星系都釋放出大量的電波
554
00:36:50,680 --> 00:36:55,960
這能量來自這些星系中心的超大質量黑洞
555
00:36:56,040 --> 00:37:00,000
這些電波星系和類星體當中,有部份的威力非常強大
556
00:37:00,120 --> 00:37:05,320
即使它們在100億光年外,我們仍然探測得到它們
557
00:37:05,360 --> 00:37:08,880
在此同時,還有一些微弱, 波長相對較短的無線電雜音
558
00:37:08,960 --> 00:37:11,320
充斥着整個宇宙
5 5 9
00:37:11,360 --> 00:37:14,160
稱為「宇宙微波背景輻射」
560
00:37:14,200 --> 00:37:16,400
它是大霹靂的回波
5 6 1
00:37:16,440 --> 00:37:20,560
也是沸騰初生宇宙的餘暉
562
00:37:22,120 --> 00:37:26,400
光譜中的每個部分都有它自己的故事
5 6 3
00:37:26,440 --> 00:37:29,960
在毫米波和次毫米波段,天文學家研究
564
00:37:29,960 --> 00:37:33,080
早期宇宙的星系形成
565
00:37:33,200 --> 00:37:37,240
以及我們銀河系中恆星和行星的起源
5 6 6
00:37:37,280 --> 00:37:41,400
但這些絕大部分的電磁波都被大氣中的水氣阻擋
567
00:37:41,520 --> 00:37:44,400
要觀測它們,得到比較高而乾燥的地方

```
```

568
00:37:44,440 --> 00:37:47,320
例如超乎想像的「拉諾德查南托」高原
5 6 9
00:37:47,440 --> 00:37:50,960
它位於智利北部,海拔五千米高,
5 7 0
00:37:50,960 --> 00:37:53,960
這兒是建造ALMA的台址
571
00:37:54,040 --> 00:37:56,880
全名為「阿塔卡瑪大型毫米與次毫米波陣列」
572
00:37:56,920 --> 00:38:01,880
當它2014年完工時
573
00:38:01,920 --> 00:38:04,320
將會成為史上最大的天文台
574
00:38:04,840 --> 00:38:09,960
64座各重100噸的天線會共同運作
575
00:38:09,960 --> 00:38:13,880
巨型卡車可以把它們分散搬運到倫敦般大的範圍
576
00:38:13,960 --> 00:38:16,800
以增加影像的細節,或可以把它們拉近集中擺放
577
00:38:16,880 --> 00:38:19,000
來拓寬視野
578
00:38:19,120 --> 00:38:23,240
它們每次都以毫米程度的精度來移動
579
00:38:24,680 --> 00:38:28,160
宇宙中很多天體都會發出紅外線
50
00:38:28,280 --> 00:38:31,960
紅外輻射是由威廉.赫歇爾所發現,又稱為「熱輻射」
581
00:38:32,040 --> 00:38:36,720
因為包括人類在内, 所有有溫度的物體
58
00:38:36,760 --> 00:38:39,080
都會放射出紅外線
53
00:38:41,840 --> 00:38:45,240
你可能比想像中還熟悉紅外輻射

```
```

58
00:38:45,360 --> 00:38:48,240
因為在地球上,紅外輻射已被應用到
5 8 5
00:38:48,360 --> 00:38:51,160
夜視鏡和照相機上
586
00:38:51,280 --> 00:38:55,160
但是要探測遙遠天體發出的微弱紅外線
587
00:38:55,280 --> 00:38:58,960
天文學家需要非常靈敏的探測器,它們必須被冷卻至
588
00:38:59,040 --> 00:39:04,000
只有紹對零度以上數度,以阻絕自身熱輻射的影響
589
00:39:06,920 --> 00:39:11,720
現在,多數大型光學望遠鏡都配備了紅外線照相機
590
00:39:11,760 --> 00:39:15,320
它們能看穿宇宙的塵埃雲,顯示當中
5 9 1
00:39:15,440 --> 00:39:20,240
在可見波段無法看到的新生恆星
592
00:39:20,280 --> 00:39:25,080
以這張位於獵戶座著名的恆星育嬰室的可見光照片為例
593
00:39:25,200 --> 00:39:27,400
看看它在紅外線照相機下
594
00:39:27,520 --> 00:39:30,080
是多麼不同
595
00:39:30,200 --> 00:39:33,320
能夠觀測到紅外線,有利於研究
596
00:39:33,360 --> 00:39:35,960
最遙遠的星系
597
00:39:35,960 --> 00:39:41,000
年輕星系中新生恆星會發出大量的紫外線
598
00:39:41,120 --> 00:39:45,000
之後這些紫外線花了上百億年的時間
599
00:39:45,120 --> 00:39:46,640

```
```

在不斷膨脤的宇宙中前行
6 0 0
00:39:46,760 --> 00:39:50,560
膨涱現象讓光波拉長,當我們接收到它們時
6 0 1
00:39:50,600 --> 00:39:55,240
已經偏移成了紅外線
602
00:39:56,600 --> 00:40:00,240
這台別具一格的儀器是位於拉帕瑪的「神奇望遠鏡」 (MAGIC)
6 0 3
00:40:00,360 --> 00:40:02,960
它搜索天空中的伽瑪射線
6 0 4
00:40:02,960 --> 00:40:06,800
這是大自然中能量最高的輻射
6 0 5
00:40:08,360 --> 00:40:10,960
人類十分幸運,地球的大氣層
6 0 6
00:40:10,960 --> 00:40:12,320
擋住了致命的伽瑪射線
6 0 7
00:40:12,360 --> 00:40:16,000
然而它們仍留下足跡讓天文學家研究
60
00:40:16,120 --> 00:40:19,000
它們碰到大氣後會產生
609
00:40:19,120 --> 00:40:20,640
一連串高能粒子
6 1 0
00:40:20,760 --> 00:40:25,320
讓MAGIC發現這衍生的微弱光源
6 1 1
00:40:26,920 --> 00:40:30,640
還有,這是位於阿根廷的皮埃爾.俄歇天文台
6 1 2
00:40:30,680 --> 00:40:33,080
它的外觀甚至不像一台望遠鏡
6 1 3
00:40:33,120 --> 00:40:38,960
皮埃爾.俄歇由1600個偵測器組成
6 1 4
00:40:38,960 --> 00:40:40,240
分佈在3000平方公里的範圍中

```
00:40:40,360 --> 00:40:44,560
它們捕捉來自遙遠超新星和黑洞的
6 1 6
00:40:44,600 --> 00:40:46,480
宇宙射線的衍生粒子
6 1 7
00:40:47,680 --> 00:40:52,400
至於那些微中子偵測器,它們建在深礦
6 1 8
00:40:52,520 --> 00:40:55,720
海底或南極冰層中
6 1 9
00:40:55,840 --> 00:40:57,880
你可以稱它們為望遠鏡嗎?
6 2 0
00:40:57,960 --> 00:40:59,400
嗯,有何不可?
6 2 1
00:40:59,520 --> 00:41:03,800
畢竟它們也用於觀測宇宙,縱然它們
62
00:41:03,840 --> 00:41:06,080
不是嚾測電磁波
6 2 3
00:41:06,120 --> 00:41:09,880
微中子是一種難以捉摸的粒子,由太陽內部
6 2 4
00:41:09,960 --> 00:41:12,240
或超新星爆發時所產生
6 2 5
00:41:12,360 --> 00:41:15,800
甚至在大霹靂中已產生
6 2 6
00:41:15,920 --> 00:41:20,640
與其他基本粒子不同,微中子能穿透一般物質
6 2 7
00:41:20,680 --> 00:41:25,640
以接近光速行走, 也不帶有電荷
6 2 8
00:41:25,760 --> 00:41:30,240
雖然這些粒子難以研究,但它們的數量卻很多
6 2 9
00:41:30,280 --> 00:41:34,160
每一秒有超過50萬億顆電子微中子由太陽而來
6 3 0
00:41:34,200 --> 00:41:36,560
並穿過我們的身體
```

```
6 3 1
00:41:36,680 --> 00:41:40,800
最後, 天文學家和物理學家聫手建造
6 3 2
00:41:40,920 --> 00:41:42,640
重力波偵測器
6 3 3
00:41:42,680 --> 00:41:46,640
這些「望遠鏡」不會觀測光波或捕捉粒子
6 3 4
00:41:46,680 --> 00:41:51,240
它們要量度時空結構中極微小的漣猗
6 3 5
00:41:51,280 --> 00:41:56,960
這是愛因斯坦的相對論所預言的概念
6 3 6
00:41:57,040 --> 00:42:01,160
依靠這些包羅萬有的儀器,天文學家開啟了全波段的電磁波觀測
6 3 7
00:42:01,200 --> 00:42:06,960
並且不斷進步
6 3 8
00:42:07,040 --> 00:42:11,240
可是, 一些觀測不能單單在地面上進行
6 3 9
00:42:11,280 --> 00:42:12,800
那怎麼辦呢?
640
00:42:12,920 --> 00:42:15,240
就看太空望遠鏡了!
6 4 1
00:42:22,000 --> 00:42:26,560
6. 衝出地球
642
00:42:28,560 --> 00:42:30,400
哈柏太空望遠鏡
643
00:42:30,480 --> 00:42:33,360
是到今天為止最著名的望遠鏡
644
00:42:33,440 --> 00:42:34,800
這也是實至名歸的
6 4 5
00:42:34,880 --> 00:42:38,560
因為哈柏在許多方面都掀起了革命
646
00:42:38,640 --> 00:42:42,040
從現在的技術來說,其實哈柏的主鏡不大
```

647
00：42：42，120－－＞00：42：45，040
它只有2．4米寬
648
00：42：45，120－－＞00：42：48，640
但它的位置是名符其實的在地球之外
649
00：42：48，720－－＞00：42：52，360
遠高於令影像模糊不清的大氣層，使它能得到
650
00：42：52，440－－＞00：42：54，600
異常清晰的宇宙景觀
651
00：42：54，680－－＞00：42：59，360
而且，哈柏可以看見紫外線和近紅外線
652
00：42：59，440－－＞00：43：02，480
這些光線是地面望遠鏡看不到的
653
00：43：02，560－－＞00：43：05，880
因為它們都被大氣層擋住了
654
00：43：05，960－－＞00：43：09，880
它的照相機和攝譜儀，有些甚至像電話亭一樣大
655
00：43：09，960－－＞00：43：14，600
不停記錄和分析來自宇宙彼岸的光線
656
00：43：14，680－－＞00：43：19，320
而就像任何地面望遠鏡一樣，哈柏也與時具進，不斷升級
657
00：43：19，400－－＞00：43：22，760
太空人會進行艙外保養維修任務
658
00：43：22，840－－＞00：43：24，440
修復損毀的零件
659
00：43：24，520－－＞00：43：27，000
更新舊儀器
660
00：43：27， 080 －－＞00：43：29， 800
使用最新發展的技術
661
00：43：29，880－－＞00：43：33，280
哈柏已經成為觀測天文學的火車頭
662
00：43：33，360－－＞00：43：37，240

徹底地改變了我們對宇宙的理解

663
00：43：39，840－－＞00：43：44，800
全靠其敏銳的目光，哈柏能觀測到火星上的季節變遷
664
00：43：45，920－－＞00：43：48，800
彗星撞木星

665
00：43：50，520－－＞00：43：53，880
側向的土星環
666
00：43：56，920－－＞00：44：00，400
甚至是細小冥王星的表面
667
00：44：00，480－－＞00：44：06，320
它揭示了恆星的生命週期，由它們誕生的最初期
668
00：44：06，600－－＞00：44：12，560
在佈滿塵埃的氣體雲育嬰室的日子，一直到它們告別生命的最後儀式
669
00：44：12，640－－＞00：44：17，800
如垂死的恆星把纖細優雅的星雲慢慢吹送到太空
670
00：44：17，920－－＞00：44：24，960
或是如超新星轟䡛烈烈地爆發，亮度幾乎超越其所在的星系
671
00：44：25，040－－＞00：44：28，960
在獵戶座大星雲的深處，哈柏甚至看見新太陽系形成的溫床－
672
00：44：29，040－－＞00：44：34，080
環抱着新生恆星的塵埃盤，其中可能即將
673
00：44：34，120－－＞00：44：36，080
有行星誕生
674
00：44：36，200－－＞00：44：40，320
太空望遠鏡也曾研究巨大球狀星團中數以千計的個別恆星

675
00：44：40，440－－＞00：44：45，960
球狀星團是宇宙中最古老的恆星家族
676
00：44：46，040－－＞00：44：48，320
當然，還有星系
677
00：44：48，440－－＞00：44：51，960
天文學家從沒有看過這麼多細節

```
00:44:51,960 --> 00:44:58,800
雄偉的螺旋結構, 引人入勝的塵埃帶, 猛烈的碰撞
6 7 9
00:45:01,040 --> 00:45:05,480
當它向空無一物的天區進行極長時間的曝光
680
00:45:05,520 --> 00:45:10,080
更揭示出數千個上百億光年遠的黯淡星系
6 8 1
00:45:10,120 --> 00:45:13,960
那些光子在宇宙還很年輕時就已展開旅程
62
00:45:14,040 --> 00:45:18,400
透過這一扇通往遙遠過去的窗口
6 8 3
00:45:18,440 --> 00:45:21,560
它研究著不斷演化的宇宙並綻放光芒
6 8 4
00:45:22,200 --> 00:45:24,880
哈柏不是太空中唯一的望遠鏡
65
00:45:24,920 --> 00:45:29,800
這是美國NASA在2003年8月發射的史匹哲太空望遠鏡
686
00:45:29,920 --> 00:45:33,720
在某種程度上,它是紅外線版的哈柏
687
00:45:33,760 --> 00:45:37,960
史匹哲有一枚口徑只有 }85\mathrm{ 公分的主鏡
68
00:45:37,960 --> 00:45:41,080
然而望遠鏡長期受隔熱盾保護
68
00:45:41,200 --> 00:45:42,480
以阻隔太陽熱力造成的影響
690
00:45:42,520 --> 00:45:47,160
再加上它的探測器放進了一個灌滿液態氦的絕熱容器
6 9 1
00:45:47,200 --> 00:45:50,080
在這裏,探測器冷卻至
692
00:45:50,200 --> 00:45:51,800
絕對零度之上數度
6 9 3
00:45:51,920 --> 00:45:55,560
使它們變得非常靈敏
```

694
00：45：55，680－－＞00：45：58，720
史匹哲把充滿塵埃的宇宙掀開
695
00：45：58，760－－＞00：46：02，560
漆黑，密不透光的麇埃雲，當被加熱時
696
00：46：02，680－－＞00：46：04，560
會發出紅外線
697
00：46：04，600－－＞00：46：08，720
由星系碰撞產生的震波把塵埃推掃成鮮明的環狀
698
00：46：08，760－－＞00：46：13，480
和潮汐結構，在當中隨處可見新恆星的誕生
699
00：46：15，520－－＞00：46：19，080
而塵埃也在恆星死亡之時產生
700
00：46：19，200－－＞00：46：23，080
史匹哲發現行星狀星雲和超新星殘骸都充滿了塵埃
701
00：46：23，200－－＞00：46：28，320
那些都是未來製造行星所必須的原料
702
00：46：28，440－－＞00：46：32，080
在其他紅外波段，史匹哲也能看透黑暗的塵埃雲
703
00：46：32，200－－＞00：46：37，720
看到原來藏在塵埃雲中心的恆星
704
00：46：37，840－－＞00：46：40，960
最後，太空望遠鏡的攝譜儀也曾研究
705
00：46：40，960－－＞00：46：44，880
太陽系外行星的大氣，這些行星是木星般的氣體巨星
706
00：46：44，920－－＞00：46：48，880
但只需數天便能繞其母恆星運轉一周
707
00：46：50，680－－＞00：46：52，880
那麼，X射線和伽瑪射線又如何呢？
708
00：46：52，920－－＞00：46：55，560
嗯，它們完全被地球的大氣層阻隔
709
00：46：55，680－－＞00：46：59，160
所以如果沒有太空望遠鏡

710
00：46：59，200－－＞00：47：02，080
天文學家就完全看不到這些高能輻射
711
00：47：03，680－－＞00：47：07，080
X射線和伽瑪射線的太空望遠鏡，展現了一個高溫
712
00：47：07，120－－＞00：47：11，800
高能量，充滿腥風血雨的宇宙，由星系團，黑洞
713
00：47：11，840－－＞00：47：16，080
超新星爆發，以及星系碰撞造成
714
00：47：18，760－－＞00：47：20，840
但是，這些望遠鏡都很難建造
715
00：47：20，920－－＞00：47：24，440
高能輻射波會直接穿透普通的鏡片
716
00：47：24，520－－＞00：47：29，680
X射線只能靠一群鍍上純金的鏡片連接起來聚焦
717
00：47：29，760－－＞00：47：33，120
而伽瑪射線只能透過精密的針孔照相機
718
00：47：33，200－－＞00：47：36，560
或大量的閃㮡器進行研究，閃爍器被光子擊中以後
719
00：47：36，640－－＞00：47：39，680
會發出一道可見的閃光
720
00：47：40，960－－＞00：47：45，120
在1990年，NASA發射了「康卜吞伽瑪射線天文台」
721
00：47：45，200－－＞00：47：48，280
當時，它是歷來發射過最大，最重的
722
00：47：48，360－－＞00：47：49，880
科學衛星
723
00：47：49，960－－＞00：47：53，120
可說是一座完美的太空物理實驗室
724
00：47：53，200－－＞00：47：56，480
2008年，GLAST繼承了康卜吞的地位
725
00：47：56，560－－＞00：48：00，520

```
全稱為「伽瑪射線大視場太空望遠鏡」
726
00:48:00,600 --> 00:48:04,120
它將會研究所有在高能宇宙內的東西
7 2 7
00:48:04,200 --> 00:48:06,520
由暗物質到脈衝星
728
00:48:08,440 --> 00:48:12,360
同時, 天文學家有兩台X射線望遠鏡放在太空之中
7 2 9
00:48:12,440 --> 00:48:17,400
美國NASA的「錢德拉X射線天文台」及歐洲(ESA)的「XMM一牛頓天文台」
730
00:48:17,480 --> 00:48:21,480
都在研究宇宙中最熾熱的地方
7 3 1
00:48:23,960 --> 00:48:27,680
這是X射線下的天空
732
00:48:27,760 --> 00:48:32,160
延伸出來的結構是被超新星爆發的衝擊波
73
00:48:32,240 --> 00:48:35,680
加熱至數百萬度的氣體雲
734
00:48:35,760 --> 00:48:39,960
那些明亮的光點是X射線雙星 -是一對中子星或是
73
00:48:39,960 --> 00:48:43,640
正在吞噬着伴星物質的黑洞
736
00:48:43,720 --> 00:48:47,280
這些掉進黑洞的熾熱氣體會釋出X射線
7 3 7
00:48:47,360 --> 00:48:51,560
同樣地, X射線望遠鏡揭示出遙遠星系核心的
7 3 8
00:48:51,640 --> 00:48:53,760
超大質量黑洞
739
00:48:53,840 --> 00:48:57,800
物質在跌進黑洞旋渦而消失的前一刻
740
00:48:57,880 --> 00:49:02,160
會被加熱至發射X射線
7 4 1
```

```
00:49:02,240 --> 00:49:06,840
稀薄的熾熱氣體亦佈滿星系團中
742
00:49:06,920 --> 00:49:08,320
星系間的空間
743
00:49:08,400 --> 00:49:12,240
有時候,這些星系團內的氣體會因為星系團間的碰撞與合併
74
00:49:12,320 --> 00:49:16,480
而被震湯並再加熱
745
00:49:16,560 --> 00:49:20,760
伽瑪射線爆發更激動人心,它是宇宙間
746
00:49:20,840 --> 00:49:22,600
所發生的最高能量事件
747
00:49:22,680 --> 00:49:26,920
這些是超大質量,高速自轉的恆星
748
00:49:26,960 --> 00:49:28,760
走到生命盡頭時極端慘烈的大爆發
749
00:49:28,840 --> 00:49:32,760
在少於一秒內,它們釋放出超過太陽
7 5 0
00:49:32,840 --> 00:49:35,760
在一百億年所放出的總能量
751
00:49:38,200 --> 00:49:42,160
哈柏,史匹哲, 錢德拉, XMM一牛頓和GLAST
752
00:49:42,240 --> 00:49:44,600
都是偉大全能的巨大儀器
753
00:49:44,680 --> 00:49:47,640
但有些太空望遠鏡相對較小而又
7 5 4
00:49:47,720 --> 00:49:49,240
有更專門的任務
755
00:49:49,320 --> 00:49:51,280
例如「科羅」
756
00:49:51,360 --> 00:49:54,880
這個法國衛星是專門用於星震學
```

```
757
00:49:54,960 --> 00:49:56,880
及太陽系外行星的研究
758
00:49:56,960 --> 00:50:01,240
還有NASA的「雨燕」衛星,這是一台結合X射線和伽瑪射線的天文台
759
00:50:01,320 --> 00:50:05,720
專為解開伽瑪射線爆發之謎而設計的
7 6 0
00:50:05,800 --> 00:50:10,160
還有WMAP, 「威爾金森微波各向異性探測器」
7 6 1
00:50:10,240 --> 00:50:13,840
它在太空僅僅兩年,已經繪製出
762
00:50:13,920 --> 00:50:17,280
異常詳盡的宇宙背景輻射圖
7 6 3
00:50:17,360 --> 00:50:21,200
WMAP為宇宙學家帶來到目前為止宇宙最早期的景觀
764
00:50:21,280 --> 00:50:26,680
那是130億年前的景緮
7 6 5
00:50:26,760 --> 00:50:29,640
不斷開拓出太空中的新领域,這是望遠鏡的發展過程中
766
00:50:29,720 --> 00:50:32,240
最令人振奮的
7 6 7
00:50:32,320 --> 00:50:34,760
那之後會怎麼樣呢?
768
00:50:37,800 --> 00:50:40,680
7. 逐鹿未來
7 6 9
00:50:42,680 --> 00:50:45,480
在亞利桑那州, 「巨型麥哲倫望遠鏡」的
7 7 0
00:50:45,560 --> 00:50:47,400
第一塊鏡片已鑄成
7 7 1
00:50:47,480 --> 00:50:50,680
這台巨大的儀器將會安裝在智利的
7 7 2
00:50:50,760 --> 00:50:52,360
拉斯坎帕納斯天文台
```

773
00：50：52，440－－＞00：50：56，040
它由7塊鏡片組成，每塊的直徑都超過8米
774
00：50：56，120－－＞00：50：59，200
組合成花瓣的形狀
775
00：50：59，280－－＞00：51：02，200
它們能收集的光量將會超過
776
00：51：02，280－－＞00：51：05，799
當前任何望遠鏡的 4 倍以上
777
00：51：05，880－－＞00：51：10，240
計劃在2015年建成的加州「三十米望遠鏡」
778
00：51：10，320－－＞00：51：13，080
可說是凱克望遠鏡的巨大版本
779
00：51：13，160－－＞00：51：16，360
數百塊拼合鏡面構成一面巨大的反射鏡
780
00：51：16，440－－＞00：51：20，520
寬度達六層樓高
781
00：51：20，600－－＞00：51：25，320
歐洲已預備了「歐洲特大望遠鏡」計劃
782
00：51：25，799－－＞00：51：29，160
它的口徑為42米，幾乎有標準奧運泳池那麼大
783
00：51：29，240－－＞00：51：32，640
表面積則是三十米望遠鏡
784
00：51：32，720－－＞00：51：34，840
的2倍
785
00：51：34，920－－＞00：51：39，400
這些未來的龐然大物，不但強化了紅外線觀測能力
786
00：51：39，480－－＞00：51：44，160
也都有靈敏的儀器和自適應光學系統

787
00：51：44，240－－＞00：51：46，840
相信它們將會揭示出宇宙中的
788
00：51：46，920－－＞00：51：50，120

```
第一代星系和恆星
7 8 9
00:51:50,200 --> 00:51:53,120
也許,它們會為我們提供其他太陽系行星
7 9 0
00:51:53,200 --> 00:51:56,160
的首張真實照片
7 9 1
00:51:56,240 --> 00:52:00,000
但對電波天文學家來說,42米一點都不大
792
00:52:00,080 --> 00:52:02,720
他們會連接許多小型的儀器
7 9 3
00:52:02,799 --> 00:52:05,080
組合成一個大型的接收器
7 9 4
00:52:05,160 --> 00:52:08,799
在荷蘭, 「低頻陣」,簡稱LOFAR
7 9 5
00:52:08,880 --> 00:52:10,520
正在建設中
796
00:52:10,600 --> 00:52:15,840
3萬枝天線將會透過光緎連接到一台中央超級電腦
7 9 7
00:52:15,920 --> 00:52:19,440
這個新穎的設計沒有任何可動元件
7 9 8
00:52:19,520 --> 00:52:22,840
但卻能同時觀察八個不同的方向
7 9 9
00:52:22,920 --> 00:52:26,120
LOFAR技術將有助於「平方公里電波陣列」
800
00:52:26,200 --> 00:52:28,600
的落成,這是目前電波天文學家們
801
00:52:28,680 --> 00:52:30,560
願望清單上的首位
802
00:52:30,640 --> 00:52:34,640
這國際性的陣列將會在澳洲或南非興建
803
00:52:34,720 --> 00:52:38,560
大的碟型天線和小的接收器將合力展示出
804
```

```
00:52:38,640 --> 00:52:42,920
一片非常詳盡的電波天空
805
00:52:43,000 --> 00:52:46,720
它的總接收面積為1平方公里
806
00:52:46,799 --> 00:52:50,440
這新建的陣列將會是史上最靈敏的
807
00:52:50,520 --> 00:52:52,920
電波望遠鏡
808
00:52:53,000 --> 00:52:58,040
演化中的星系, 威力強大的類星體, 不停眨眼的脈衝星
809
00:52:58,160 --> 00:53:01,799
沒有任何電波源能成功逃過
810
00:53:01,880 --> 00:53:04,760
平方公里電波陣列的法眼
811
00:53:04,799 --> 00:53:08,280
它甚至有機會接收到由地外文明傳來的
812
00:53:08,360 --> 00:53:11,840
電波訊號
813
00:53:11,920 --> 00:53:15,160
至於太空望遠鏡呢?
814
00:53:15,240 --> 00:53:19,040
哈柏太空望遠鏡在第五次也是最後一次的
815
00:53:19,120 --> 00:53:24,480
維修任務後將服務至2013年左右
816
00:53:24,560 --> 00:53:28,720
大概到那時候,它的繼承者就會升空
817
00:53:30,760 --> 00:53:34,720
那就是「詹姆士.韋伯太空望遠鏡」, 這台紅外線太空天文台
818
00:53:34,799 --> 00:53:40,480
是用以前美國航太總署署長之名來命名
819
00:53:40,560 --> 00:53:44,840
抵達太空後,它那6.5米口徑的拼合鏡面
```

```
820
00:53:44,920 --> 00:53:48,480
會像花朵一樣展開
821
00:53:48,560 --> 00:53:51,360
感光度比哈柏強7倍
82
00:53:51,440 --> 00:53:54,520
它有一個巨大的遮光罩
823
00:53:54,600 --> 00:53:57,960
一直遮萻著光學和低溫儀器,讓它們在
824
00:53:58,040 --> 00:54:03,000
接近攝氏零下233度的低溫環境下運作
825
00:54:04,200 --> 00:54:07,880
韋伯太空望遠鏡將不會繞着地球運行
826
00:54:07,960 --> 00:54:11,640
反之,它會停泊在距離地球150萬公里的地方
827
00:54:11,720 --> 00:54:15,880
以寛廣的繞日軌道運行
828
00:54:15,960 --> 00:54:19,080
半個世紀前,帕洛瑪山上的海爾望遠鏡
829
00:54:19,160 --> 00:54:20,960
曾是史上最大的望遠鏡
830
00:54:21,000 --> 00:54:25,120
現在,一台比它還要大的望遠鏡將會在太空的深處飛行
831
00:54:25,160 --> 00:54:29,440
我們只能靠想像去推測它將帶給我們多麼驚人的發現
832
00:54:29,520 --> 00:54:31,680
請密切留意!
833
00:54:32,160 --> 00:54:34,880
在此同時,富創意的工程師常為
834
00:54:34,960 --> 00:54:37,720
新望遠鏡帶來革命性的設計
835
00:54:37,799 --> 00:54:42,040
在加拿大,科學家建造了一台「液態鏡片望遠鏡」
```

836
00：54：42，120－－＞00：54：45，200
在這種望遠鏡裡，星光不是由一個
837
00：54：45，280－－＞00：54：49，360
固體的鏡子反射，而是用一個盛滿液態水銀的
838
00：54：49，440－－＞00：54：52，600
轉動曲面來反射
839
00：54：52，680－－＞00：54：56，360
這樣的設計讓水銀望遠鏡只可以向上望
840
00：54：56，440－－＞00：54：59，120
但它的優點是比較便宜
841
00：54：59，200－－＞00：55：01，360
而且容易建造
842
00：55：01，440－－＞00：55：04，440
電波天文學家則想把如LOFAR般的小型天線陣列
843
00：55：04，520－－＞00：55：07，360
放在月球的表面
844
00：55：07，440－－＞00：55：10，880
好盡可能遠離來自地球的干擾
845
00：55：10，960－－＞00：55：13，520
說不定有朝一日，還會有一台大型的
846
00：55：13，600－－＞00：55：16，360
光學望遠鏡放在月球的背面呢
847
00：55：16，440－－＞00：55：19，360
而在太空望遠鏡和遮掩圓盤協助底下
848
00：55：19，440－－＞00：55：21，960
X射線天文學家的觀測範圍，將有機會
849
00：55：22，040－－＞00：55：23，040
大大擴展
850
00：55：23，120－－＞00：55：25，720
他們或許還能看到
851
00：55：25，799－－＞00：55：27，760

黑洞的最邊緣

852

00：55：29，560－－＞00：55：32，560
或許有一天，望遠鏡能解答其中一個
853
00：55：32，640－－＞00：55：38，840
一直困擾着人類的問題：在宇宙中，人類孤單嗎？

854
00：55：42，480－－＞00：55：45，800
我們知道在宇宙中還有其他的太陽系
855
00：55：45，920－－＞00：55：48，280
我們甚至猜想有行星和地球一樣
856
00：55：48，400－－＞00：55：50，200
有着液態水

857
00：55：50，320－－＞00：55：51，200
但．．．
858
00：55：51，320－－＞00：55：53，440
那裡有生命嗎？
859
00：55：54，320－－＞00：55：58，120
要找出這種太陽系外行星是很困難的
860
00：55：58，240－－＞00：56：00，680
它們經常躲在天文學家的視線外

861
00：56：00，720－－＞00：56：03，960
掩藏在其母恆星的強光下
862
00：56：04，920－－＞00：56：08，040
發射到夜空之中的干涉儀也許能提供
863
00：56：08，160－－＞00：56：10，760
一個新穎的解決方案

864
00：56：10，799－－＞00：56：13，520
目前，美國航太總署正考慮一個稱為
865
00：56：13，560－－＞00：56：16，120
「類地行星搜索者」的計劃
866
00：56：16，240－－＞00：56：20，680
而在歐洲，科學家正設計着「達爾文陣列」
867

```
00:56:20,799 --> 00:56:24,360
6台太空望遠鏡列隊環繞着太陽運行
868
00:56:24,480 --> 00:56:28,520
它們間的距離由雷射控制,可準確至十億分之一公尺
869
00:56:28,560 --> 00:56:32,200
集合起來,它們擁有難以置信的分辨能力,能抵消
870
00:56:32,240 --> 00:56:36,040
恆星所放出的壓倒性光芒,好讓科學家能看見
871
00:56:36,160 --> 00:56:39,800
環繞着其他恆星,像地球般的行星
872
00:56:40,640 --> 00:56:44,880
然後, 天文學家必須研究由行星反射出來的光
873
00:56:45,000 --> 00:56:49,960
它帶有行星大氣的光譜指紋
874
00:56:50,000 --> 00:56:53,280
說不定,我們或許在15年內就能探測到
875
00:56:53,320 --> 00:56:55,600
氧氣, 甲烷和臭氧的印記
876
00:56:55,720 --> 00:56:58,800
這些都是生命的標記
877
00:57:01,000 --> 00:57:03,520
宇宙充滿着驚喜
878
00:57:03,640 --> 00:57:05,960
夜空帶來的感動從來沒有停止
879
00:57:06,080 --> 00:57:08,960
難怪全球成千上萬的業餘天文愛好者
880
00:57:09,000 --> 00:57:11,520
在每個晴朗的晚上都會外出
81
00:57:11,640 --> 00:57:13,200
為宇宙著迷
82
00:57:13,240 --> 00:57:15,520
他們用的望遠鏡都比
```

```
88
00:57:15,640 --> 00:57:16,960
伽俐略當年用的好
84
00:57:17,000 --> 00:57:20,600
他們拍的數位相片甚至勝過了
85
00:57:20,640 --> 00:57:23,760
數十年前的專家所拍攝的照片
886
00:57:23,880 --> 00:57:27,200
天文學家對宇宙知識的渴求,利用望遠鏡
887
00:57:27,240 --> 00:57:30,760
對宇宙進行的探索, 也只有400年
88
00:57:30,799 --> 00:57:35,040
, 在宇宙中還有很多未被開發的疆土。
89
00:57:35,560 --> 00:57:38,880
自從伽俐略在四個世紀前用他的望遠鏡窥探穹蒼
890
00:57:39,000 --> 00:57:42,200
人類已經向前邁進了一大步
891
00:57:42,240 --> 00:57:45,440
雖然今天我归仍然用着望遠鏡來觀測宇宙
892
00:57:45,480 --> 00:57:50,800
但不再佑限在地球上,早已進入了無窮無盡的太空
893
00:57:50,920 --> 00:57:54,520
人類的根本在於
894
00:57:54,640 --> 00:57:57,680
我們擁有無盡的智慧和求知慾
895
00:57:57,799 --> 00:58:00,360
而我們才剛開始解答着一些
896
00:58:00,400 --> 00:58:02,440
最重要的問題
897
00:58:02,480 --> 00:58:05,120
我們在銀河系中找到了超過300顆行星
898
00:58:05,160 --> 00:58:09,200
也偵測到環繞着遙遠恆星的
```

899
00：58：09，240－－＞00：58：12，760
行星上，存在着有機分子
900
00：58：12，799－－＞00：58：17，440
這些難以置信的紹妙發現好像是人類探索史上的頂峰
901
00：58：17，520－－＞00：58：21，520
但最好的狀況無疑地尚未來臨
902
00：58：21，640－－＞00：58：24，440
其實，你也可以加入發現者的行列
903
00：58：24，480－－＞00：58：29，200
只要抬頭，去感受！

