

Key words: VLT, Main Mirror Recoating, Aluminum Layer

ESOcast Episode 120: ChileChill 10 – "VLT Main Mirror Recoating"	
00:00 [Visual starts] New ESOcast intro	00:00 ESOcast introduction
00:20 1. Far away in Chile's Atacama Desert, ESO's Very Large Telescope (VLT) sits 2635 metres above sea level.	
00:32 2. These four huge telescopes contain some of the biggest mirrors in the world, capturing billion-year-old light .	
00:45 3. To catch as much faint light from the cosmos as possible, these mirrors have to be extremely reflective.	
00:57 4. A layer of aluminium , just 80 nanometres thick, coats the mirror surface — more than 50 square metres of Zerodur [®] glass ceramic.	
Over time the mirrors are exposed to dust and other pollutants.	
01:26 5. To maintain high-quality astronomical images, the mirrors must be cleaned and the aluminium coating regularly replaced .	
01:37 6. Recoating is an intense and laborious procedure . It is vital that the mirror is not scratched or damaged in any way.	

01:46 7. There is no replacement mirror if this goes wrong!	
02:00 8. The eight-day operation begins by carefully driving the 23-tonne mirror to the recoating plant.	
02:14 9. First, the underside is cleaned by hand to remove all oils, particles and other contaminants	
02:27 10. The mirror is then taken to the clean room for another round of cleaning, to ensure that no large pollutants or dust remain on the mirror's surface.	
02:53 11. Acid then removes the aluminium film , revealing the true amber colour of the material underneath.	
03:06 12. After final rinsing and drying, the mirror is moved to the vacuum chamber .	
03:16 13. After the air is sucked out, electrically-stimulated plasma completes the last cleaning and drying of the optical surface.	
03:23 14. Finally, aluminium particles are vapourised onto the mirror to create a thin, new, perfectly-reflecting coating. A total of only 12 grams!	
03:36 15. One final check is made to measure the reflectivity.	
The mirror is then returned home to the VLT to continue producing some of the most	

remarkable observations ever made.	
04:00 [Outro]	Produced by ESO, the European Southern Observatory. Reaching new heights in Astronomy.