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Type Ia supernovae play a fundamental role as cosmological probes of dark energy47

and produce more than half of the iron in our Galaxy [1]. Despite their central impor-48

tance, a comprehensive understanding of their progenitor systems is still lacking [2].49

In addition, the triggering mechanism of a thermonuclear explosion in a white dwarf50

star is still a long-standing fundamental problem. A persistent paradigm [3–5] has been51

that a white dwarf in a close binary star system can collect mass from the companion52

star until it approaches the Chandrasekhar mass limit (∼1.4 M⊙), resulting in run-53

away nuclear burning. However, modern simulations and observations disfavour this as54

the main scenario, and instead favour explosions of less massive white dwarfs produc-55

ing Type Ia supernovae [6–10]. Despite this recent paradigm shift, there is a substantial56

lack of direct observational evidence in support of either particular explosion pathway57

leading to a Type Ia explosion, as the respective progenitors are observationally elusive.58

Our deep observations with the Multi Unit Spectroscopic Explorer (MUSE) of the59

young supernova remnant SNR 0509-67.5 reveal for the first time in the reverse shocked60

ejecta a double-shell calcium structure and a single shell of sulphur. This morphol-61

ogy is consistent with the predictions of hydrodynamical double-detonation simulations62

of sub-Chandrasekhar-mass white dwarf explosions. Our observations provide the first63

substantial evidence from the supernova remnant phase that sub-Chandrasekhar mass64

explosions through the double-detonation mechanism do occur in nature.65

1 Main66

The question of how a thermonuclear explosion initiates in an inert object like a white dwarf67

star is an essential and long-standing problem in stellar astrophysics [11]. In a white dwarf68

consisting of carbon and oxygen and approaching the Chandrasekhar mass, the increasing69
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central density inevitably triggers nuclear burning. The almost constant explosion mass that70

the Chandrasekhar-mass explosion model provides was a popular explanation for the homo-71

geneity initially attributed to Type Ia supernovae [12]. However, the recent wealth of data72

challenges the notion of homogeneity [13], and a fixed mass seems even problematic for73

reproducing the width–luminosity relation [14], which is vital for calibrating Type Ia super-74

novae as cosmological distance indicators. The width–luminosity relation is more naturally75

explained by a variable white dwarf mass below the Chandrasekhar-mass limit as the primary76

parameter [15, 16]. Moreover, the ability to grow white dwarfs to the Chandrasekhar mass77

restricts the parameters of the progenitor binary system to a narrow range, so that the observed78

rate of Type Ia supernovae is hard to reconcile with the expected number of systems consistent79

with the Chandrasekhar-mass explosion scenario [17, 18]. This calls for alternative scenarios80

involving explosions of carbon-oxygen white dwarf stars well below the Chandrasekhar-mass81

limit and raises the fundamental problem of how to ignite a thermonuclear explosion in an82

inert sub-Chandrasekhar mass white dwarf.83

A head-on collision of two white dwarfs may seem promising as a pathway for84

producing sub-Chandrasekhar mass exploding white dwarfs [19], however, this sce-85

nario is not favoured because the predicted occurrence rates are too low [20]. The86

currently most promising scenario for exploding sub-Chandrasekhar mass white dwarfs is a87

double-detonation: A carbon-oxygen white dwarf collects helium-rich material from a non-88

degenerate or degenerate companion (from a helium star or a helium-rich white dwarf, or89

from the pre-existing thin helium layer on top of a carbon-oxygen white dwarf in merger90

events [21–23]). In this helium layer, a detonation is triggered, either by compressional heat-91

ing when the helium layer (or shell) becomes sufficiently massive, or due to dynamical92

instabilities [24–27]. This first detonation propagates through the helium shell and drives a93

shock wave into the carbon-oxygen core where it focuses spherically into a small volume. The94

compression and heating of the carbon-oxygen material in this region initiates a secondary95

detonation in the core material and successfully explodes the sub-Chandrasekhar mass white96

dwarf [28].97

Although numerous simulations indicate that the double-detonation mechanism is fea-98

sible, so far they have failed to resolve the spatial length scales on which the primary99

helium detonation ignites [29, 30]. While unable to demonstrate the ignition of the required100

detonations, these simulations do provide us with critical information about the structure,101

morphology and early time spectra of a double-detonation Type Ia supernova if the ignitions102

of both detonations are successful.103

One observational signature supporting the double-detonation mechanism includes104

the detection of intermediate mass elements at appropriately high velocities, and plau-105

sible evidence for double-detonation events has been previously discussed in the context106

of high velocity features (HVFs) [9, 31, 32]. The HVFs of Ca II and Si II were studied107

in a sample of 445 SNe at epochs up to 5 days past maximum brightness [33]. HVFs108

of Ca II were found in almost two-thirds of the [33] sample, but interestingly such fea-109

tures were absent from the 91bg-like (faint) sub-class of SNe Ia. [Ca II] has also been110

observed at later times in the spectra of SN 2019yvq [34, 35], SN 2018byg [36] and SN111

2016hnk[37]. To date, supernova SN2018byg is widely-acknowledged as one of the most112

compelling cases in linking the double-detonation mechanism to a SNe Ia explosion, and113

is best-explained by a model that incorporates a rather massive helium shell [36].114
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In terms of double-detonation nucleosynthesis, the detonations in the carbon-oxygen115

core and the helium-rich shell result in qualitatively different yield products. This should not116

come as a surprise, since both the types of fuel (carbon/oxygen vs. helium) and the densities117

(higher density in the core and lower density in the shell) differ substantially, by about 2118

orders of magnitude. In the core, the density of the fuel is the key parameter that determines119

the outcome of the explosive nuclear burning. For densities greater than ≈ 7 × 106 g cm−3,120

the burning is nearly complete, and iron-group elements (IGEs), especially the radioactive121

56Ni nucleus, dominate the nucleosynthetic yields. At the “intermediate” densities further off-122

center in the core, the nuclear fusion time-scale becomes increasingly longer and the rapid123

expansion of the white dwarf leads to a freeze-out of the nuclear reactions before burning to124

IGEs is completed. As a result, the synthesis of intermediate-mass elements (IMEs) dominates125

these regions, with heavier IMEs like calcium relatively more abundant further inside and126

lighter IMEs like silicon or sulphur becoming relatively more abundant as the fuel density127

further decreases outward. Eventually the density becomes too low (≈ 3 × 106 g cm3) for128

oxygen to burn and only carbon continues to burn to light IMEs like oxygen, neon, and129

magnesium. A recent review [38] shows a schematic of this well known layered structure.130

At even lower densities, the fuel composition rapidly changes where the helium shell131

begins. Importantly, owing to its lower Coulomb barrier, helium (4He) is more reactive,132

and helium detonations are possible down to much lower densities [39]. Similar to the133

carbon-oxygen core, helium-shell detonations produce a radially layered progression in the134

atomic weight of the burning products, with the heavier elements like chromium, iron, or135

nickel preferentially synthesized at the inner, denser parts of the shell; lighter elements like136

unburned helium, carbon, or oxygen are found at the outer, less dense parts of the shell,137

and intermediate-mass elements like silicon or sulphur in between [40] (see Extended Data138

Fig. 1). For optimal agreement with observations (in particular the colours in synthetic139

lightcurves), it is important that the density at the base of the helium shell is not too large140

(less than ∼ 106 g cm−3), such that the production of IGEs in the He-shell is limited and141

intermediate-mass elements like calcium are the most abundant nucleosynthesis products at142

the base of the helium shell [27, 32].143

Therefore, taking the nucleosynthetic signatures of the CO core and the He-shell together,144

double-detonation models predict calcium to be concentrated in two separate layers: an inner145

layer from the core region, corresponding to the incomplete burning of the CO-detonation146

(at fuel densities around a few × 106 g cm−3), and an outer layer at higher velocity in the147

expanding explosion ejecta, corresponding to the base of the He-shell (fuel densities around a148

few 105 g cm−3). Explosion models, including the M10 03 model by Collins et al. [41] (see149

Fig. 2 in Extended Data) predict such a double shell morphology of Ca, with intermediate150

mass elements lighter than Ca, such as S or Si, located in between the two shells.151

While numerical simulations alone cannot confirm that the double-detonation mechanism152

occurs in nature, a confirmed observation of the tell-tale two-shell structure would supply153

direct evidence for its operation in Type Ia supernovae. However, the unique double shell Ca154

morphology “fingerprint” structure remains inaccessible at the epochs around peak luminos-155

ity (15 to 20 days after explosion) because the inner part of the expanding ejecta is opaque156

to optical light and the object remains a spatially unresolved point source. This, however,157

changes with time as the supernova continually expands. Here we present a new piece of158
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compelling evidence – a “photographic snapshot” – that SNe Ia can explode via the double-159

detonation mechanism. The evidence is based on deep MUSE integral field observations of160

the reverse shocked ejecta of the supernova remnant SNR 0509-67.5 (hereafter SNR 0509).161

From light echo observations, SNR 0509 is known to be part of the SN1991T-like (more162

luminous than average at peak brightness) sub-class of SNe Ia [42, 43]. It is very young163

(∼ 300− 350 yrs [44]) and located in the nearby Large Magellanic Cloud (LMC), granting164

us an exclusive view into the early stages of the evolution of a Type Ia SNR. A few hun-165

dred years after the explosion, the inner part of the expanding ejecta is exposed by166

shock waves in the supernova remnant [45] and can be spatially resolved in astronom-167

ical observation. The ejecta of SNR 0509 is expanding in a low-density ambient medium,168

as evidenced by the near-spherical symmetry of the forward shock. Detailed tomography and169

modelling of the emission of the reverse shocked ejecta in this system has been performed170

[45], which reported the discovery of [Fe XIV]5303, and excesses indicating the presence171

of [Fe IX]8235, [Fe XV]7060, as well as [S XII]7611. The resulting new constraints from172

the location of the optical emission of the reverse shocked ejecta and a set of analytical173

hydrodynamical supernova remnant models [45] were used to argue that the SN1991T-like174

event forming this SNR should have been an energetic sub-Chandrasekhar mass explosion175

[46]. Following the discovery of the optically-emitting reverse shocked ejecta, our team con-176

ducted deeper optical observations of SNR 0509, which now reveal the shocked ejecta in177

greater detail (see Fig. 1 for a sample spectrum extracted from the western side of the rem-178

nant). In addition to the emission lines detected previously, we now also detect [Fe IX]4967,179

[Fe X]6375, [Fe XI]7892, and possibly [Ni XIII]4950. Importantly, we also observe broad180

[Ca XV]5695. The morphology of this calcium line relative to the sulphur emission reveals181

important clues about the nature of the supernova explosion mechanism.182

Specifically, we report here the discovery in SNR 0509 of a double shell structure of183

highly-ionized [Ca XV] alongside a single shell of [S XII] emission from the supernova184

ejecta (see Fig. 2). The inward propagating reverse shock progressively ionizes the ejecta185

material, exhibiting optical forbidden line emission from these highly ionized atoms of186

calcium and sulphur. Thus, the observed shell structures of calcium and sulphur reflect187

the morphological distribution of the ejecta material. The observed shell structures of188

these species are comparable (since the SNR is still young and expanding into a low den-189

sity ambient medium [46]) with the column density structures of the same elements in the190

M10 03 model [26]. M10 03 is a hydrodynamical explosion model of a double-detonation191

with a carbon-oxygen-rich core mass of 1.028 M⊙ and a He-shell mass of 0.027 M⊙. The192

double-shell structure of 40Ca evident in Fig. 2 (see also Fig. 3 for overlay) is a signature193

of the double-detonation explosion scenario, where the outer Ca-shell is formed due to the194

burning of the He shell and the inner Ca-shell is formed due to burning of the carbon–oxygen195

core. By showing surface brightness contours, Fig. 4 illustrates the double shell structure of196

calcium (cyan), with sulphur (red) peaking in between the two calcium shells, and the Balmer197

emission behind the forward shock which is much further out (magenta). The position of198

the Balmer emission marks the shocked CSM and the observed [Ca XV] along with the199

[S XII] are positioned behind the forward shock. We stress again the fact that these200

observed emission lines of highly-ionized [Ca XV] come from the ejecta that have been201

shocked by the (radially inward-propagating) reverse shock. The width of the Gaus-202

sian profile is proportional to the reverse shock speed. The narrow line width of the203
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outer shell compared to the broader inner shell indicates that the reverse shock speed204

increases as it travels inwards, possibly due to clumping of the ejecta. The peak of the205

sulphur emission as observed is spatially located between the inner and outer calcium shells,206

closer to the outer shell (see Fig. 4 upper centre), which follows the structural morphology of207

the M10 03 model with remarkable similarity (see Fig. 1, Extended data). We attribute the208

partial overlap of the sulphur and outer calcium shells to atmospheric seeing. Our spec-209

tral analysis and modelling show that within uncertainties, the Doppler shifts of the inner210

and outer calcium shells are similar to one another (see section Emission Line Fitting). This211

provides evidence that we are looking at two limb-brightened shells of calcium (see analy-212

sis), as predicted by the double-detonation explosion scenario.The surface brightness of the213

double-shell structure of [Ca XV] peaks at two radii: at 1.73±0.07 pc and 2.06±0.07 pc214

from the remnant’s centre. Although the observations reported here qualitatively match215

the signature of the double-detonation explosion model, we do not imply that the chosen216

model is quantitatively reproducing the observations precisely. We selected this exist-217

ing double-detonation model as an archetype to compare the tell-tale morphological218

structure of the detonations, without fine-tuning the model to achieve a best-matching219

fit.220

The proper motion of the forward shock has been reported to be ∼ 6500 km/s221

[47], unsurprisingly significantly smaller than the ejecta velocity of ∼ 25000 km/s of222

the fiducial model from [26]. The simulated model only tracks the ejecta for 100s after223

the explosion, whereas the observed remnant is a few centuries older. The significant224

decrease in the expansion velocity is due to the remnant interacting with the circumstel-225

lar medium. This also reduces the radial extent of the ejecta and the distances between226

the respective shells in the supernova remnant predicted under the assumption of pure227

free-expansion.228

The spatial morphology of the observed distribution of the sulphur and calcium lines229

match what would be expected of a double-detonation of a white dwarf just above 1 solar230

mass harbouring a thin (low-mass, e.g. ∼0.03 solar masses) helium shell. We thus conclude231

that SNR 0509 was the result of a double-detonation initiated in a low-mass helium-shell of232

a sub-Chandrasekhar mass WD progenitor. This is the first direct photographic evidence of233

the morphological signature of a specific explosion mechanism in the remnant phase for234

a Type Ia supernova.235

Our observation provides novel and compelling evidence from the supernova rem-236

nant phase, and contributes to resolving the long-standing debate as to whether a Type237

Ia supernova explosion is possible from a sub-Chandrasekhar mass white dwarf with238

a thin helium-shell. By extension, this implies that some 1991T-like SNe are plausibly239

explained by double-detonations of sub-Chandrasekhar mass WDs. The highest-mass explo-240

sion model from [26] produced 0.84M⊙ of 56Ni, which is within the predicted range for241

91T-like SNe Ia [13]. Recent observations of SN 2022joj and SN 2020eyj hints towards242

the possibility of a 91T-like event from the double-detonation of a CO WD [48, 49].243

Further reports on observations of SN 2020eyj – classified as a 1991T-like event with244

evidence of helium-rich circumstellar material – have been speculated to be as a conse-245

quence of the double-detonation mechanism [50]. Despite the heavy limitations on 3D246

simulation capability, and to date no explosion model can adequately explain 91T-like247

SNe, recent radiative transfer simulations that incorporate non-local thermodynamic248
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[Fe IX]
8234.5Å
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Broad Hβ

Broad Hα

??

[Ni XIII]?
4950Å

Fig. 1 Spectrum extracted from a region on the western side of the SNR 0509 (region inside the right white rectangle
in Fig 2). Seen are broad coronal lines of different ionization states of iron, calcium, and sulfur (and possibly nickel)
from the reverse shocked ejecta as well as broad and narrow Balmer lines from the forward shock. The gap in the
spectrum around 589 nm stems from the MUSE notch filter used to block the residual laser light from the 4LGSF
system (see Sec. 2.1 of the Methods section for details).

equilibrium (NLTE) physics show more promise. It was recently reported that heavy ele-249

ments in higher ionization states reduce absorption effects, thus bringing a wider range250

of He shell masses into better agreement with observed SN Ia spectra [51, 52].251

While our observations prove the double-detonation mechanism is capable of trigger-252

ing an explosion in a white dwarf star, both double-degenerate and single-degenerate origins253

remain possible for the evolutionary scenario [53, 54]. Recent multidimensional double-254

detonation simulations [23, 55–57] show that in the white dwarf merger scenario, in255

addition to the primary WD undergoing a double-detonation, the companion WD can256

also undergo a double-detonation (resulting in a ‘quadruple detonation’) upon being257

impacted by ejecta from the exploding primary WD. Such a double-double-detonation258

could possibly also lead to the observed double shell structure of calcium. However,259

self-consistent calculations of the predicted coronal line emission of the reverse shocked260

ejecta do not yet exist for any explosion model. While we are therefore currently unable261

to conclusively differentiate between the different variants of double-detonations, we262

can say that some form of double-detonation leads to Type Ia supernovae.263

Our discovery marks the unique capability of supernova remnant tomography of the264

reverse shocked ejecta; similar methods of observation can be extended to other young Type265

Ia supernova remnants. Observations of spatially-resolved inner ejecta are not possible dur-266

ing the explosion itself due to the high opacity and compactness of the material. However,267

after the ejecta have expanded, it is possible to attain a resolved view of the nucleosynthesis268

and structural distribution that arose as a consequence of the Type Ia supernova explosion.269
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Fig. 2 Top-left: Reverse shocked ejecta emitting in [Ca XV] in SNR 0509 obtained by integrating over a slice from
5626Å to 5752Å (for more details, see Data Visualisation and Analysis). The area within the Eastern (left) white
highlighted rectangle shows the region picked for examining the double shell structure. The region within the Western
(right) rectangle is the extraction aperture for the spectrum shown in Fig. 1. Top-right: Integrated column (along the
line of sight) of density × density × X(Ca), which shows a double shell structure of calcium in the model M10 03
after 100s of explosion. Bottom-left: Reverse shocked ejecta emitting in [S XII] in SNR 0509, obtained by integrating
over a spectral slice from 7502Å to 7726Å. The bright point sources in the figure are not sulphur clumps but rather
stars that have strong emission lines in the wavelength range of [S XII] (for more details, see analysis). A highly red-
shifted background galaxy can be observed at the same wavelength in the centre of the remnant as a diffuse red spot.
Bottom-right: Integrated column of density × density × X(S), which shows a single shell structure of sulphur in
the model M10 03.
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Detailed forward modelling of supernova remnant evolution that calculates the ejecta ioniza-270

tion and excitation structure for 300 – 800 years after explosion holds great promise to make271

significant advances in understanding the diverse origin of Type Ia supernova progenitors.272
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2 Methods430

2.1 Observations and data reduction431

SNR 0509 was observed with the MUSE [1] optical integral field spectrograph, which is432

mounted on the Unit Telescope 4 (UT4) of the European Southern Observatory (ESO) Very433

Large Telescope on Cerro Paranal, under ESO program ID 0104.D-0104(A) (P.I.: Seitenzahl).434

The data were acquired in service mode with the WFM-AO setup over 25 distinct nights435

spread over 24 months (see Table 2.1 for details). A total of 39 individual observations have436

an exposure time of ∼ 2700 s each (corresponding to total exposure time of ∼105300 s =437

29 h and 15 min on-source), while a single observation (that was ignored in our analysis)438

has an exposure time of 93.92 s. In the WFM-AO mode, MUSE data spans the optical wave-439

length range from 4690 Å to 9340 Å with a resolution of R∼3000. This mode relies on the440

UT4 Adaptive Optics Facility [2, AOF], which is comprised of a deformable secondary441

mirror [3], the AO modules GRAAL [4] and GALACSI [5] (of which only the latter is442

relevant for MUSE operations), and the 4 Laser Guide Star Facility [6, 4LGSF] that443

is responsible for the creation of artificial guide stars by means of four 22 W sodium444

lasers. When MUSE is observing in any of its AO mode, a notch filter centered around445

the lasing wavelength of 589 nm is inserted in the scientific light path to avoid the con-446

tamination of data by scattered laser light1. The dip in the spectrum presented in Fig. 1447

is a direct consequence of this notch filter.448

We use ESOReflex [Freudling2013] version 2.11.5, and the MUSE data reduction449

pipeline version ‘2.8.9’ [11] to perform a standard data reduction of our data. The standard450

reduction was performed using the default settings, which removes the standard and known451

skylines from the data. This reduction was performed on Tycho, a large memory Linux work-452

station at the University of New South Wales in Canberra specifically designed for data453

reduction of MUSE observations. Using the MUSE pipeline, all 39 individual MUSE pixel454

tables were stacked together into the final mosaic analyzed and discussed in this article, which455

has a size of 1 arcmin × 1 arcmin, with a spaxel size of 0.2 arcsec × 0.2 arcsec.456

2.2 Data processing and sky subtraction457

Standard pipeline data reduction using EsoReflex performs background sky subtraction either458

by using pre-calculated skylines and continuum if dedicated sky observations are available459

or by computing a sky from the fraction of the field of view specified by the parameter460

SkyFr 2. The latter option is used in the present case. The residual skylines present in the final461

1The notch filter does not prevent the contamination of MUSE observations by Raman-scattered laser photons [see 7–10, for
details]. These emission lines are cleaned up by the MUSE data reduction pipeline [11].
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mosaic remain problematic, given the low-flux scientific signals from the shocked ejecta. We462

have therefore implemented an additional “local background” subtraction approach to fur-463

ther minimize these residual skylines, and help with the analysis of the faint broad signals464

in the spectrum, similarly to [12]. The background selection was performed locally using465

QFitsView. Eight local background regions were selected from the white-light image, avoid-466

ing stellar or SNe ejecta contamination. These areas are usually small (∼ 30 − 40 spaxels),467

since the field is crowded with stars, and away from the SNR 0509 center as shown in Fig. 3.468

The combined datacube (MUSE DEEP) has been corrected for Galactic extinction along469

the line-of-sight using a customized brutifus (https://github.com/brutifus) procedure. We use470

a Fitzpatrick (1999) reddening law [13] with RV = 3.1, AB = 0.272, and AV = 0.206,471

obtained through NED from a re-calibration[14] of the infrared-based dust map [15].472

2.3 Data analysis and visualization473

The highly ionized calcium ([Ca XV]) in the reverse shocked ejecta is visualized in the upper474

left panel of Fig. 2 of the main article. We have integrated the spectrum from 5626Å to475

5752Å, where we observe the [Ca XV] signal (λ0 = 5694.80). A continuum is subtracted by476

selectively choosing and integrating the spectrum ranging from 5591Å to 5608Å and from477

5759Å to 5802Å to minimise stars and residual noise. Since the flux of the broad emission478

line of calcium is very low, comparable to the background noise, we have visualized the sliced479

data cube of calcium using a log colour scale. To minimize distracting artificial features from480

bright stars, we have also only visualized the region inside the forward shock (as delineated481

by the Hα shell), since no ejecta is present outside of the forward shock for SNR 0509482

[16, 17] (the signal outside the forward shock is set to zero). The sulphur in the lower left483

panel of Fig. 2 has been visualized by a similar process of integrating the spectrum from484

7502Å to 7726Å and subtracting a continuum on both sides of the signal (7399Å to 7434Å485

and 7716Å to 7827Å). Although this procedure works well to subtract the stellar continuum,486

the resultant [S XII] signal is still left with some residual stellar emission line exactly at the487

same wavelength range selected for its visualization. Due to this, there are few bright stars488

appearing as bright blobs in [S XII].489

We have also analyzed the hydrodynamical explosion model M10 03 [18] to compare490

the structural signatures of calcium and sulphur, formed as a result of the double-detonation491

supernova event. As the SNR 0509 is a young remnant, the reverse shock has not yet reached492

the center of the remnant, and thus the calcium and sulphur are ionized to some extent from493

the rim. We have calculated the ratio of the radius of the outer shell of [Ca XV] (3.53 parsec)494

and the inner radius of [Fe IX] (2.52 parsec) which is ≈ 1.4. The inner radius of [Fe IX] in495

the observed ejecta marks the inward extent of the reverse shock. Since SNR0509 is a young496

Type Ia remnant, the reverse shock has not yet reached the centre of the explosion. The radii497

were calculated by fitting circles on the outer shell of [Ca XV] and the shell of [Fe IX] in498

SAOIMAGE DS9 [19]. This ratio is then used to find the inner radius of calcium and sulphur499

in the model. The density of the elements inside the inner radius has been masked to mimic500

the extent of the reverse shock from the rim toward the center in the observation. We plotted501

the integrated (along the line of sight) column of density × density × mass fraction of502

calcium and sulphur, respectively. We have chosen this quantity for comparing with the503

observations (see Fig 2) because the surface brightness of the coronal lines should scale504

with the collision rate, which is proportional to electron density and species ion density.505
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For a highly ionized medium, the electron density ne is proportional to the total particle506

density, giving us the density × density × mass fraction scaling.507

Fig. 4 (upper center) shows the Balmer emission (Hα) due to forward shock and508

reverse shocked ejecta in terms of surface brightness contour levels. Hα (in green) con-509

tours are given by (0.884, 0.977, 1.135, 1.254, 1.457) 10−15 erg s−1 cm−2 Å−1 arcsec−2,510

the levels of [S XII] are given by (1.080, 1.255, 1.533, 1.694, 2.070, 2.404, 2.657)511

10−17 erg s−1 cm−2 Å−1 arcsec−2 and the [Ca XV] contours are (1.974, 2.411, 2.944, 3.975,512

4.854, 6.889]) 10−18 erg s−1 cm−2 Å
−1

arcsec−2. The contour levels are chosen in the image513

created using the integration of the surface brightness per spaxel, over the binned wave-514

length containing their respective signals. The contours with smaller areas represent regions515

of higher surface brightness in contrast to larger contour areas. The formation of several small516

contour regions in [S XII] and [Ca XV] marks the presence of small regions with very high517

surface brightness, caused by the formation of high-density blobs (clumping of the ejecta) in518

the reverse shocked ejecta. Whereas the forward shock (Hα) is much smoother with no pres-519

ence of clumping. The above operations were carried out by the python package Astropy [20,520

21] and visualized with Matplotlib [22].521

Fig, 4 (lower) shows the mean surface brightness of [Ca XV] in annular bins on522

the y-axis against radius on the x-axis. The region of SNR 0509 in the North-East523

exhibiting the double shell morphology most clearly is considered for the operation.524

The data are binned into annuli of 1.5 spaxel width, with the centre of the annuli525

at RA = 05h 09m31.0s and DEC = −67◦31′18′′. We masked areas most affected by526

stars by considering the increase in the average flux of the spectrum above 5 ×527

10−20 erg s−1 cm−2 Å−1 arcsec−2. This approach was necessary to minimize the contam-528

ination from any star as the tool Brutifus is unable to subtract stellar signals in these529

broad coronal lines.530

2.3.1 Ionization effect on ejecta531

We investigate the ionization fractions in the densest part of the SNR model for 0509–67.5532

favored in recent research [23]; 1.5 × 1051 ergs explosion energy, 1 M⊙, and 0.4 amu/cm3
533

interstellar medium density. Using an outer envelope power law of 7 for the outer 3/7 of the534

ejecta by mass, the densest ejecta are found at this boundary. Here, [Fe XIV] forms without535

any clumping, at an ionization age net = 2 × 109 cm−3 s, but is maximized in ionization536

fraction for about a factor of 1.5× clumping in density. [S XII] requires 1.5 − 3× clumping,537

and [Ca XV] needs 3− 5× density enhancement. The fact that [S XII] forms where the ejecta538

are predicted to be the densest, and [Ca XV] form either side strongly implies stratification539

of element abundances rather than an ionization effect. This clumping most plausibly arises540

as radioactive Ni-Co formed in the explosion expands and compresses the non-radioactive541

surroundings, and is consistent with the lack of clumping required for [Fe XIV].542

2.4 Emission line fitting543

We have selected 4 regions from each of the suspected double shell structures of the [Ca XV]544

from the eastern region, where it is more distinctly visible. The spectra from the outer shell545

(black squres) and inner shell (maroon squares) regions are summed independently to improve546

the signal/noise ratio. Each region is ∼ 3 × 3 spaxel, shown in Fig. 4 (upper center) of the547
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main-text. We have used the Gaussian function with a defined constant and the curve fit548

function from Scipy.signal to fit the signal. The curve fit function returns the opti-549

mum parameters after fitting and the associated covariance for the values from which the550

errors are calculated.551

We calculated the Doppler shift for both apparent shells of [Ca XV] to ensure that they552

are distinct structures having different distances from the remnant centre, and are not553

simply two different regions located on different areas of the same spherical shell but554

having the same physical distance from the remnant’s centre. The latter might give in555

projection a false impression of a double shell structure. We can test for and rule out556

such a scenario by measuring the Doppler shift of the inner shell in comparison to the557

outer shell. If both arcs are situated at a similar radius (i.e., they are different regions558

of the same spherical shell), then the inner arc should be significantly Doppler-shifted559

relative to the outer arc. On the other hand, if both are found to be expanding perpen-560

dicular to the line of sight, then we are seeing two limb-brightened separate shells with561

a correspondingly small Doppler shift between them.562

In Fig. 4 (lower), the surface brightness of the outer and inner shells of calcium563

peak at a radius of 2.06 pc and 1.73 pc, respectively, from the geometric centre of the564

remnant. For simplicity, lets assume that the ejecta is expanding radially outward in565

spherical symmetry, likely a good assumption given the young age of the remnant and566

the high degree of spherical symmetry. For the ‘projection’ case described above where567

the flux peaks are due to two distinct regions on the same expanding shell, the area with568

smaller (projected) distance from the centre will have a (projected) radius R2, which is569

related to R1 by the angle θ (see Fig 1). Therefore the relation between the two radii570

due to such a projection effect can be simply defined as R2 = R1cosθ, where R1 > R2.571

Therefore, θ = 0.57 radian. Let us assume a conservative radial expansion speed of572

calcium V = 7000 km/s (maximum Doppler shift calculated from iron is ∼ 6000 km/s573

and the calcium is expected to be expanding at a higher speed than iron). Therefore,574

the Doppler velocity of the ejecta at the observed angle would be V0 = V sinθ , which575

is ∼ 3800 km/s. Thus, the expected difference in Doppler velocity considering the two576

shells as the part of the same sphere would be much higher than what is observed. We577

therefore rule out the ‘projection’ scenario, and conclude the calcium peaks, seen clearly578

in Fig. 4, arise from two physically distinct shell structures. Thus, a similar Doppler shift579

represents two limb-brightened edges of the [Ca XV] as predicted in the models and shown580

in Fig. 2. The peak wavelengths obtained from the fitting parameters are (5677 ± 8)Å and581

(5676 ± 18)Å for the outer and inner shell, respectively, indicating that the Doppler shift582

varies very little in both regions: 660 ± 430 km/s for the outer shell and 730 ± 950 km/s583

for the inner shell.584

2.5 Data Availability585

The raw MUSE data were collected at the European Organisation for Astronomical Research586

in the Southern Hemisphere, Chile (ESO Programme 0104.D-0104(A)) and are freely587

available from the ESO archive (https://archive.eso.org/cms.html). The data for the hydrody-588

namical simulation of the double-detonation explosion mechanism was developed at HITS589

and is available upon request.590
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2.6 Code Availability591

The codes used are available upon request from the first author.592
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Number of Obs. Date of observa-
tion

Exposure time (s) Airmass DIMM Seeing at
Start (arcsec)

1 8/02/2021 2700 1.364 0.68
2 8/02/2021 2700 1.389 0.49
3 7/02/2021 2700 1.367 0.51
4 7/02/2021 2700 1.397 0.61
5 6/02/2021 2700 1.384 0.37
6 5/02/2021 2700 1.396 0.67
7 16/01/2021 2700 1.402 0.52
8 12/01/2021 2700 1.381 0.72
90 11/01/2021 2700 1.395 0.6
10 10/01/2021 2700 1.396 0.66
11 17/12/2020 2700 1.365 0.53
12 17/12/2020 2700 1.375 0.44
13 16/12/2020 2700 1.375 0.56
14 15/12/2020 2700 1.398 0.53
15 15/12/2020 2700 1.375 0.45
16 14/12/2020 2700 1.406 0.35
17 14/12/2020 2700 1.37 0.61
18 13/12/2020 2700 1.37 0.66
19 13/12/2020 2700 1.394 0.32
20 13/12/2020 2700 1.411 0.49
21 13/12/2020 2700 1.365 0.52
22 12/12/2020 2700 1.365 0.53
23 12/12/2020 2700 1.495 0.46
24 12/12/2020 2700 1.395 0.6
25 12/12/2020 2700 1.369 0.48
26 10/12/2020 2700 1.391 0.67
27 22/11/2020 2700 1.364 0.42
28 20/11/2020 2700 1.367 0.6
29 20/11/2020 2700 1.369 0.47
30 15/11/2020 2700 1.404 0.48
31 14/11/2020 2700 1.441 0.47
32 14/11/2020 2700 1.382 0.51
33 13/11/2020 2700 1.419 0.5
34 13/11/2020 2700 1.371 0.61
35 12/11/2020 2700 1.385 0.51
36 12/11/2020 2700 1.363 0.47
37 16/02/2020 2700 1.456 0.39
38 23/12/2019 2700 1.396 0.37
39 26/11/2019 2700 1.371 0.36

Table 1 Presents the dates of all the nights when the target was observed and information about the
quality of Observation.

of the deep cube: P.D., I.R.S., J.S.; MUSE Data Analysis and visualization: P.D., I.R.S., R.S.;675

Writing-original draft: P.D., I.R.S., F.K.R., A.J.R., J.M.L, with inputs from all the authors;676

Explosion model data analysis and visualization: C.E.C., S.A.S., P.D., I.R.S., F.K.R., R.P.;677
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Extended Data Figure. 1 Simple diagram for the visualization of the projection effect affecting the radius of an
expanding spherical ejecta
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Extended Data Figure. 2 Slices through the y-z plane of the M10 03 double-detonation hydrodynamical explosion
model [18, 25] show the distribution of sulfur (left), calcium (middle), and nickel (right) in velocity space.
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Extended Data Figure. 3 White rectangular boxes represent the area of the sky selected for additional background
subtraction. This additional step reduces the contamination by sky emissions significantly
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Extended Data Figure. 4 Changes in the spectrum with different stages of data reduction by background sky
subtraction and removal of sky-lines
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