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ABSTRACT

Most of the galaxies in the Universe at present day are in groups, which are key to understanding

the galaxy evolution. In this work we present a new deep mosaic of 1.2 × 1.0 square degrees of the

group of galaxies centered on NGC 5018, acquired at the ESO VLT Survey Telescope. We use u, g, r

images to analyse the structure of the group members and to estimate the intra-group light. Taking

advantage of the deep and multiband photometry and of the large field of view of the VST telescope,

we studied the structure of the galaxy members and the faint features into the intra-group space and

we give an estimate of the intragroup diffuse light in the NGC 5018 group of galaxies. We found that

∼ 41% of the total g-band luminosity of the group is in the form of intragroup light (IGL). The IGL

has a (g - r) color consistent with those of other galaxies in the group, indicating that the stripping
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leading to the formation of IGL is ongoing. From the study of this group we can infer that there are at

least two different interactions involving the group members: one between NGC 5018 and NGC 5022,

which generates the tails and ring-like structures detected in the light, and another between NGC 5022

and MCG-03-34-013 that have produced the HI tail. A minor merging event also happened in the

formation history of NGC 5018 that have perturbed the inner structure of this galaxy.

Keywords: surveys – galaxies: elliptical and lenticular, cD – galaxies: fundamental parameters –

galaxies: formation – galaxies: halos – galaxies: groups: individual (NGC 5018)

1. INTRODUCTION

The hierarchical, merger-dominated picture of galaxy

formation predicts that the observed galaxies and their

dark halo (DH) were formed through repeated merging

processes of small systems (De Lucia et al. 2006). Under

this paradigm, clusters of galaxies are the most recent

objects to form and their central galaxies continue to

undergo active mass assembly and accretion of smaller

groups.

Throughout this cluster assembly, individual galax-

ies interact with one other. During these interactions,

matter can be stripped from galaxies and form tidal

tails, shells, bridges, and liberating stars from their

host galaxies, which contribute to formation of a very

faint component of diffuse intacluster light (ICL) (Mi-

hos 2015).

According to this picture, any star that becomes un-

bound from its host galaxy contributes to the growth of

ICL, which can then be considered as the fossil record

of all the past interactions. If so, the main properties of

the ICL, such as color, metallicity, spatial distribution,

are closely linked to the properties of galaxies in which

intracluster stars are originated, and then can help to

disentangle their formation history.

In the group environment, interactions between galax-

ies are slow leading to a strong tidal stripping of material

and to the formation of tidal debris, which are mixed

into the ICL when the groups fall into the cluster. In

situ star formation can also occur in the intracluster

medium, due to the presence of gas stripped from in-

falling galaxies, contributing to feed the ICL. Following

this evolutionary picture, the diffuse intragroup light

(IGL) can be considered as a precursor to the ICL in

massive clusters of galaxies.

Since groups contain most of the galaxies in the Uni-

verse (∼ 60%) at present day, the group environment

is of particular interest for the study of the intragroup

starlight. IGL is in fact quite evident in strongly in-

teracting groups, given that the strong interactions are

able to expel diffuse material out to large distances (Da

Rocha & Mendes de Oliveira 2005; Watkins et al. 2015).

In the last decade, a big effort was made to deter-

mine the amount and spatial distribution of intragroup

light in both normal and compact groups, both on the

observational and on the theoretical side.

Theoretical studies give conflicting predictions on the

fraction of the IGL component and of its variation with

the group mass. Numerical simulations by Napolitano

et al. (2003); Lin & Mohr (2004); Murante et al. (2004,

2007); Purcell et al. (2007); Watson et al. (2012); Tol-

let et al. (2017) predict a strong evolution of the ICL

and IGL fraction with the cluster and group mass, while

Krick & Bernstein (2007) found an anti-correlation be-

tween the ICL/IGL fraction and the cluster/group mass.

Contini et al. (2014) found that the fractions of ICL and

IGL predicted by their models range between 10% and

40% and that they don’t vary as a function of the mass.

Models by Sommer-Larsen (2006); Rudick et al. (2006)

show that from 12% to 45% of the light in groups is in

the form of IGL, and that the fractions of IGL/ICL can

be used as a “dynamical clock”, since they increase with

the degree of dynamical evolution of the group/cluster

(i.e. more evolved groups/clusters have largest fractions

of diffuse light).

On the observational side, the diffuse IGL/ICL com-

ponent has been mapped using several observational

techniques, such as deep imaging (Feldmeier et al. 2002;

Mihos et al. 2005; Zibetti et al. 2005), the detection of

red giant branch stars associated with the diffuse stellar

component (Williams et al. 2007), and intracluster plan-
etary nebulae (Arnaboldi et al. 2002, 2004; Aguerri et al.

2005, 2006; Gerhard et al. 2005, 2007; Castro-Rodriguéz

et al. 2009; Longobardi et al. 2013, 2015).

The fraction of IGL has been estimated in some com-

pact groups of galaxies. Da Rocha & Mendes de Oliveira

(2005); Da Rocha et al. (2008) found smooth envelopes

of diffuse light around the studied galaxy groups, and es-

timated IGL fractions of 11%-46%, with colors compat-

ible with those of galaxies in the groups. They also sug-

gest an evolutionary sequence for the analyzed groups,

i.e. groups with highest IGL fraction are in a more ad-

vanced phase of their dynamical evolution, with respect

to groups with smaller fractions of IGL. Also White et

al. (2003) found a consistent amount of IGL (38%-48%)

in the compact group HCG 90, with a color distribution

consistent with an old stellar population, while Aguerri
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et al. (2006) found that an IGL fraction for the group

HCG 44 of 4.7%. In contrast, Watkins et al. (2017)

found no diffuse light in the M96 group. DeMaio et al.

(2018) by studying the properties of 23 galaxy groups

found that the Bright Cluster Galaxies (BCGs) together

with the ICL constitute a higher fraction of the total

mass in groups than in clusters, and that the group en-

vironments are more efficient ICL producers. McGee &

Balogh (2010) by studying spectroscopically confirmed

intragroup supernovae Ia, inferred that 47% of the stel-

lar mass in the analyzed galaxy groups was in the form

of IGL.

The study of intracluster planetary nebulae in two

fields of the Virgo cluster, by Arnaboldi et al. (2004)

, revealed that the diffuse light contributes from 17% to

43% of the total (i.e., galaxies + diffuse light) luminos-

ity density in the imaged fields. Castro-Rodŕıguez et al.

(2003), by carrying out a wide field survey for emission

line objects associated with the intragroup HI cloud in

the Leo group, have been able to set an upper limit for

the ratio of diffuse intragroup to galaxy light that is ∼
1.6%. Castro-Rodriguéz et al. (2009) by using planetary

nebulae detected in several regions of the Virgo cluster,

derived a fraction of ICL of ∼ 7% of the total light in

Virgo cluster galaxies.

Recently, wide-field and deep photometric studies

have revealed the presence of diffuse IGL even in the

less dense environment of the loose groups (Ibata et al.

2014; Okamoto et al. 2015), where slow encounters are

particularly effective at liberating stars from galaxies in

the intragroup medium. Loose groups of galaxies are

intermediate in scale between galaxies and rich clus-

ters, and due to their irregular nature their definition

is ambiguous. Their environment is also intermediate

between that of isolated galaxies and that of the cores

of rich clusters, and therefore the study of IGL in these

environments is of particular interest, given that it can

give clues on galaxy and galaxy cluster evolution.

Despite these many programs aimed at the study of

the IGL/ICL in a variety of different systems in differ-

ent dynamical states, there are still observational and

interpretational difficulties to still face, which make the

investigation of the IGL and ICL not a trivial task. Over

the past decade many observational studies of these dif-

fuse components have been carried out, but despite this

the amount of ICL is hard to estimate. First, the fact

that ICL and IGL components are diffuse and have very

faint levels of surface brightness, which implies accurate

techniques to correctly estimate all source of contami-

nation, first the background. Second, the fact that the

IGL/ICL is strictly connected to the BCGs and it is not

always possible to distinguish from photometry only the

diffuse (unbound) component from the extended (likely

bound) stellar halos of the BCGs.

In the recent years, a great impulse to these researches

has been given by deep photometric surveys aimed at

studying galaxy structures out to the regions of the

stellar halos, where the galaxy light merges into the

intra-cluster component (Ferrarese et al. 2012; Duc

et al. 2015; Muñoz et al. 2015; Merritt et al. 2016).

The VST Early-type Galaxy Survey (VEGAS) (see

http://www.na.astro.it/vegas/VEGAS/Welcome.html)

is just a part of this campaign and it is producing com-

petitive results. From the surface photometry for the

cD galaxy NGC 4472, a tail of intracluster light was

detected between 5Re ≤ R ≤ 10Re, in the range of sur-

face brightness of 26.5−27.6 mag/arcsec2 in the g band

(Capaccioli et al. 2015). New results on six massive

early-type galaxies (including NGC 4472) in the VE-

GAS, confirm the feasibility of such a survey to reach

the faint surface brightness levels of 27−30 mag/arcsec2

in the g band, out to ∼ 10Re (Spavone et al. 2017).

Therefore, taking advantage of the deep photometry,

the build up history of the stellar halo can be addressed

by comparing the surface brightness profile and the

stellar mass fraction with the prediction of cosmological

galaxy formation.

As part of VEGAS, the Fornax Deep Survey (FDS)

at VST covers the Fornax cluster out to the virial ra-

dius (∼ 0.7 Mpc), with an area of about 26 square

degrees around the central galaxy NGC 1399, and in-

cluding the SW subgroup centered on Fornax A. First

results have provided the up-to-date largest mosaics

that covers an area of 3 × 6 square degrees around the

central galaxy NGC 1399 (see the ESO photo release

at https://www.eso.org/public/news/eso1612/) and an

area of ∼ 4×2 square degrees around the central galaxy

NGC 1316 of the SW group of the Fornax cluster (Iodice

et al. 2016, 2017a). The deep photometry, the high spa-

tial resolution of OmegaCam and the large covered area

allow to map i) the surface brightness around NGC 1399

and NGC 1316 out to an unprecedented distance of

∼ 200 kpc down to µg ' 29 − 31 mag/arcsec2 (Iodice

et al. 2016, 2017a); ii) to trace the spatial distribution

of candidate Globular Clusters (GCs) inside ∼ 0.5 deg2

of the cluster core (D’Abrusco et al. 2016; Cantiello et

al. 2018); iii) to detect new and faint (µg ' 28 − 30

mag/arcsec2) features in the intracluster region between

NGC 1399 and NGC 1387 (Iodice et al. 2016) and in the

outskirts of NGC 1316 (Iodice et al. 2017a); iv) to de-

tect an unknown region of intra-cluster light (ICL) in

the core of the cluster, on the West side of NGC 1399

(Iodice et al. 2017b).
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Thanks to the coverage of different morphological

types, masses and environments in VEGAS, we have

started a study dedicated to the synoptic analysis of GC

systems in different host galaxies. As an example, pre-

liminary results from GCs in NGC3115 and NGC1399,

support the scenario where the red/metal-rich GCs com-

ponent is bound to the galaxy, while the blue/metal-

poor GCs are gravitationally associated with a cluster-

wide component, if present (Cantiello et al. 2018).

In this work we present a new deep mosaic of 1.2×1.0

square degrees of the group of galaxies centered on

NGC 5018, acquired at the ESO VST. We use u, g,

r images to analyse the structure of the group members

and to estimate the intra-group light. This work rep-

resents a pilot study in the framework of the VEGAS

survey to study the IGL components in the less dense

environments of the groups.

We adopt a distance for NGC 5018 of D = 40.9 Mpc

(Tully 1988), therefore the image scale is 198.3 par-

secs/arcsec.

The plan of the paper is the following. In Sec. 2

we present the properties of NGC 5018 as found in the

literature, while in Sec. 3 we describe the data used in

this work, as well as the adopted observing strategy and

the data reduction. In Sec. 4, 5 and 6 the photometric

optical, infrared and UV analysis are described. In Sec.

7 we present the 1D fitting procedure adopted and the

derived accreted mass fractions of galaxies in the group.

In Sec. 8 we draw our conclusions.

2. NGC 5018 IN THE LITERATURE

NGC 5018 is the brightest member of a small group

of five galaxies (Gourgoulhon et al. 1992), composed by

the edge-on spiral, NGC 5022, the S0 galaxy MCG-03-

34-013, and the two face-on dwarf, gas-rich (∼ 108M�)

spirals labeled as S2 and S3 by Kim et al. 1988 (see Fig.

1). Kim et al. (1988), adopting a distance D ∼ 22.5h−1

Mpc, also estimate that the group has a size of ∼ 200

kpc and a total mass of ∼ 4×1012M�. Despite its classi-

fication as “normal” elliptical, NGC 5018 shows several

signs of a past interaction event, such as a very complex

system of dust lanes, shells, a tail on the NW side, and

a prominent bridge of gas toward the companion galaxy

NGC 5022. The galaxy is also present in the list of shell

galaxies revealed by Malin & Carter (1983).

The HI mass associated to NGC 5018, estimated by

Kim et al. (1988), is ∼ 4 × 108M�, while the same au-

thors found that the HI in NGC 5022 is distributed in

a rotating disk, with a mass of ∼ 2× 109M�.

Follow-up HI observations made by Guhathakurta et

al. (1990), showed that the HI bridge actually connects

NGC 5022 with MCG-03-34-013, while it bifurcates at

the position and radial velocity of NGC 5018. They also

estimate that the interaction which led to the formation

of the northern plume was recent (∼ 6 × 108 Gyrs).

Guhathakurta et al. (1990) assert that their HI and op-

tical data provide the direct observational evidence for

the formation of a shell system, through the merger of

an elliptical galaxy with a cold disk system.

Many authors also found the presence of a young (∼
3 Gyrs) and dominant stellar population in the central

regions of NGC 5018 (Bertola et al. 1993; Carollo &

Danziger 1994; Leonardi & Worthey 2000; Buson et al.

2004; Rampazzo et al. 2007), with a near solar metallic-

ity. The peculiarities found in NGC 5018, such as the

lower metallicity with respect to the giant ellipticals, the

presence of an Mg2 index much weaker than those of el-

lipticals of similar absolute magnitude, the low UV flux

level, the presence of bluer shells, a complex system of

dust lanes, and a bridge of HI connecting NGC 5018

with NGC 5022, pose serious problems to the classical

picture of elliptical galaxies formation.

Bertola et al. (1993) proposed two possible scenarios

for the formation of this peculiar galaxy. The first sce-

nario is the merging of many separate smaller galaxies,

having low metallicities, while the other possibility is the

formation ab initio with low metallicity and the subse-

quent, recent, merging with a small disk galaxy, which

is able to reproduce the morphological peculiarities of

NGC 5018. Bertola et al. (1993) discounted the dust

obscuration as the cause of the low UV flux level be-

cause the best photometry available at that time showed

that the dust lane does not cover the regions of their

UV spectra. Later, Carollo & Danziger (1994) showed

the presence of the dust till to the very central regions,

demonstrating that the reddening effect was not negli-

gible.

Leonardi & Worthey (2000) derived a robust redden-

ing insensitive estimate of the age of the young stellar

population in the central regions of NGC 5018. The es-

timated age of 2.8 Gyrs of this population, which dom-

inates the visible part of the spectrum, also explain the

small UV flux with no need to invoke a large amount of

dust obscuration.

NGC 5018 has been examined by Rampazzo et al.

(2013) using Spitzer-IRS spectrograph in Infrared, in

the range 4-38 µm (see in particular their Figure 5).

The galaxy nucleus shows Polycyclic Aromatic Hydro-

carbon features (PAHs) with interband ratios typical

of late-type galaxies. These PAH features are present

only in 9+4
−3 fraction of early-type galaxies in the Re-

vised Shapley-Ames catalogue examined by Rampazzo

et al. (2013). This suggests that NGC 5018 has a still
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actively star forming nuclear region, since IRS (SL+LL)

spectra integrate in a projected region of 0.7×3.3 kpc.

Hilker & Kissler-Patig (1996) studied the properties of

the globular clusters (GCs) of NGC 5018. They detect

a poor globular cluster system, that can be divided in

two populations: a small population of blue GCs, with

ages between several hundred Myrs and 6 Gyrs, and

one or two populations of older GCs. The first popu-

lation was probably formed during the last interaction,

while the second one is associated to the original galaxy.

Another peculiarity of this galaxy is the distribution of

GCs; Hilker & Kissler-Patig (1996) found that blue GCs

are missing in a stripe extending from South-East to

North of the galaxy and that red GCs are instead over-

abundant in this same stripe. The inhomogeneous dis-

tribution of the HI found by Guhathakurta et al. (1990),

could be the responsible of the inhomogeneous distribu-

tion of GCs, but this can not explain the overabundance

of red objects in the stripe. The small amount of young

GCs found in NGC 5018 (∼ 10 %) is an evidence against

a significant increase of GCs by a merger event for this

galaxy.

NGC 5018 was also observed in the X-rays with the

Chandra X-Ray Observatory’s Advanced CCD Imag-

ing Spectrometer by Ghosh et al. (2005). These au-

thors found six nonnuclear X-ray point sources in NGC

5018, as well as diffuse hot gas that may be the rem-

nant of interactions of NGC 5018 with its neighbor

galaxies. Their total absorption-corrected luminosity for

the diffuse light was 13.7 ± 1.5 × 1039 erg/s. Ghosh

et al. (2005) also estimated a radiative cooling time

for the hot plasma of a few times 107-108 yr, which

turns to be shorter than the age of the last interaction

(Guhathakurta et al. 1990). They conclude that the gas

is still falling in and that it is reheated by ionization,

stellar winds, and supernovae by recent star formation

activity. Moreover, they found that, even if there is little

current star formation in NGC 5018, there is a signifi-

cant reservoir of gas which maintains a low but steady

level of star formation, also explaining the diffuse X-ray

emission of the galaxy.

Recently, Chandra X-ray data have been analyzed by

Smith et al. (2018) to study the diffuse X-ray emitting

gas in major mergers. They did a rough classification

of the systems in their sample into seven merger stages.

According to the adopted criteria, they classify NGC

5018 as a very late stage major merger remnant.

Summarizing, our present knowledge converges in in-

dicating that in NGC 5018 merging episode/s may have

characterized its recent history. With the study of the

IGL we aim at adding a new tessera in the mosaic con-

sidering its evolutionary environment.

3. OBSERVATIONS AND DATA REDUCTION

The data presented in this work are part of the VE-

GAS1 survey, which is a multiband u, g, r and i imaging

survey, obtained with the ESO VLT Survey Telescope

(VST).

With VEGAS we are mapping the light distribu-

tion and colors out to 8-10 Re and down to µ ∼
30 mag/arcsec2 in the g band, for a large sample (∼ 42)

of early-type galaxies in different environments, includ-

ing giant cD galaxies in the core of clusters. The main

science goal of VEGAS are to study i) the galaxy struc-

ture and its faint stellar halo, including the diffuse light

component, inner substructures as signatures of recent

cannibalism events, inner disks and bars; ii) the external

low-surface brightness structures of the galaxies (tidal

tails, stellar streams and shells) and the connection with

the environment; iii) for those galaxies in the sample

with D < 40 Mpc, the GCs and galaxy satellites in the

outermost regions of the host galaxy and their photo-

metric properties (e.g. GC colours and mean GC radial

colour changes). A more detailed description of the sur-

vey, the selected targets and the main scientific aims can

be found in Capaccioli et al. (2015). The data reduction,

performed by using the VST-Tube pipeline (Grado et al.

2012), and the analysis are described in details by Ca-

paccioli et al. (2015); Spavone et al. (2017); Iodice et al.

(2016, 2017b).

The most important step of the data processing is the

estimation and subtraction of the sky background. For

this reason, we adopt a step dither observing strategy

for galaxies with large angular extent, since it allows a

very accurate estimate of the sky background (Spavone

et al. 2017; Iodice et al. 2016, 2017b). This strategy

consists of a cycle of short exposures centered on the

target and on offset fields (∆ ∼ ±1 degree). With such

a technique the background can be estimated from ex-

posures taken as close as possible, in space and time, to

the scientific images. This ensures better accuracy, re-

ducing the uncertainties at very faint surface brightness

levels. This observing strategy allowed us to build an av-

erage sky background of the night, which was subtracted

from each science image. This average sky frame takes

into account the small contribution to the sky bright-

ness by the smooth components plus the extragalactic

background light. The residual fluctuations in the back-

ground are then estimated, and taken into account, by

using the methodology described by Pohlen & Trujillo

(2006), as explained in Spavone et al. (2017). These

fluctuations of the sky background have been taken into

1 http://www.na.astro.it/vegas/VEGAS/Welcome.html



6 Spavone et al.

Table 1. VST exposures used in this work.

Object Band Texp FWHMa

[sec] [arcsec]

NGC 5018 u 8280 0.77

g 8280 0.77

r 8280 0.94

aMedian value of the FWHM.

account in the error estimates we quote on our surface

brightness measurements.

In the case of NGC 5018 we adopted as offset field

the one located at the West side of the galaxy (R.A.

13h08m47.260s Dec. -19d20m46.40s), since this field is

not very crowded and, mainly, because it does not con-

tain very bright galaxies and stars.

The data used in this paper consist of exposures in

u, g and r bands obtained with VST + OmegaCAM,

in visitor mode (run ID: 096.B-0582(B), 097.B-0806(A)

and 099.B-0560(A)), during dark time, in photometric

conditions, with an average seeing between 0.6 and 1.1

arcsec (see Tab. 1). In this work we analyze an area of

1.2 square degrees around NGC 5018. This area covers

the three main galaxies of the small group, composed by

the dominant early type galaxy, NGC 5018, the edge-

on spiral, NGC 5022, the S0 galaxy MCG-03-34-013,

analyzed in this work, whose main properties are listed

in Tab. 2.

4. SURFACE PHOTOMETRY

4.1. Isophotal analysis

The isophotal analysis of the galaxies in this work is

performed on the final mosaic in each band with the

IRAF2 task ELLIPSE.

In the top panel of Fig. 2 we show the VST g band

image of NGC 5018, NGC 5022 and MCG-03-34-013,

in surface brightness levels. In the bottom-left panel of

the same figure we show the ellipticity (ε) and position

angle (P.A.) profiles in the g band (blue points), r band

(red points), and u band (green points) resulting from

our isophotal analysis, performed via the ELLIPSE task

as described in details in Spavone et al. (2017). The

bottom-right panel shows the g, r and u band VST az-

imuthally averaged surface brightness profiles of NGC

2 IRAF (Image Reduction and Analysis Facility) is distributed
by the National Optical Astronomy Observatories, which is op-
erated by the Associated Universities for Research in Astronomy,
Inc. under cooperative agreement with the National Science Foun-
dation.

Table 2. Basic properties of the galaxies studied in this
paper.

Parameter Value Ref.

NGC 5018

Morphological type E3 RC3

R.A. (J2000) 13h13m01.0s NED

Dec. (J2000) -19d31m05s NED

Helio. radial velocity 2816 km/s NED

Distance 40.9 Mpc Tully (1988)

NGC 5022

Morphological type SBb pec RC3

R.A. (J2000) 13h13m30.8s NED

Dec. (J2000) -19d32m48s NED

Helio. radial velocity 3001 km/s NED

Distance 40.4 Mpc NED

MCG-03-34-013

Morphological type S0 RC3

R.A. (J2000) 13h12m18.9s NED

Dec. (J2000) -19d26m46s NED

Helio. radial velocity 2691 km/s NED

Distance 40.7 Mpc NED

5018. No correction for seeing blurring is applied to the

inner regions of the profiles.

The same isophotal analysis has been performed also

for NGC 5022 and MCG-03-34-013, and the results are

shown in Fig. 3 and 4, respectively.

The growth curves obtained by isophote fitting, have

been extrapolated to the derive total magnitudesmT , ef-

fective radii Re and corresponding effective magnitude

µe in each band (Tab. 3). All the reported magnitudes

are corrected for interstellar extinction, by using extinc-

tion coefficients derived by Burstein & Heiles (1982).

4.2. Two dimensional model of the light distribution

The IRAF task BMODEL creates a 2-dimensional

image file containing a noiseless photometric model of

a source image (“parent image”). The model is built

from the results of isophotal analysis generated by the

isophote fitting task, ELLIPSE. We use BMODEL to

create a model of NGC 5018, which is able to take into

account also ellipticity and P.A. variations. In Fig. 5 we

show the residual image obtained by subtracting from

the VST g band image the galaxy model.

The complex structure of NGC 5018 stands out very

clear from the residual image. From this map, in fact,

we can clearly identify a numer of substructures, such as
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Figure 1. Top: VST g-band mosaic of NGC 5018 group. The image size is 1.2◦× 1.0◦. Bottom: Color composite image of
the central regions of the group (0.7◦× 0.4◦), assembled from u, g and r band VST images, with the HI map from the VLA
superimposed (blue contours), adapted from Kim et al. (1988).
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Figure 2. Top: VST g band sky-subtracted image of the 0.4◦ × 0.4◦ field around NGC 5018. The color scale represents surface
brightness in mag/arcsec2. Bottom left: ellipticity (ε) and position angle (P.A.) profiles for NGC 5018, in the g band (blue
points), r band (red points), and u band (green points). Bottom right: Azimuthally averaged surface brightness profiles in the
g (blue), r (red), and u (green) bands.
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Figure 3. Left: ellipticity (ε) and position angle (P.A.) profiles for NGC 5022, in the g band (blue points), r band (red points),
and u band (green points). Right: Azimuthally averaged surface brightness profiles in the g (blue), r (red), and u (green) bands.

Figure 4. Left: ellipticity (ε) and position angle (P.A.) profiles for MCG-03-34-013, in the g band (blue points), r band (red
points), and u band (green points). Right: Azimuthally averaged surface brightness profiles in the g (blue), r (red), and u (green)
bands.

a prominent tail in the NW side of the galaxy, the bridge

connecting NGC 5018 with NGC 5022 and the loop on

the SE side of NGC 5022, which were also visible in

the “parent image”, as well as multiple shells, filaments

and fans of stellar light, extending to the central galaxy

regions.

We used the method described by Tal et al. (2009) to

quantify the tidal disturbance of NGC 5018, by dividing

the masked VST g band image of the galaxy and the

galaxy model obtained as explained above. The result-

ing model frame is shown in Fig. 6

From this figure it appears even more clearly the com-

plex dust lanes system in the central regions of the

galaxy, as well as its multiple shells and fans of diffuse

material. NGC 5018, in fact, has been classified by Tal

et al. (2009) as an “Highly Disturbed Galaxy”, on the

basis of its tidal parameter. According to these authors,

such a complex system is probably the result of merg-
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Table 3. Distances and photometric parameters for the sample galaxies.

Object D Au Ag Ar µe,u re,u mT,u MT,u µe,g re,g mT,g MT,g µe,r re,r mT,r MT,r

[Mpc] [mag] [mag] [mag] [mag/arcsec2] [arcmin] [mag] [mag] [mag/arcsec2] [arcmin] [mag] [mag] [mag/arcsec2] [arcmin] [mag] [mag]

(a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c)

NGC 5018 40.9 0.493 0.362 0.263 24.98 1.40 11.71 -21.35 21.92 0.54 10.93 -22.49 24.68 3.41 9.29 -23.77

NGC 5022 40.4 0.513 0.377 0.274 23.83 0.43 14.09 -18.94 21.67 0.29 13.38 -19.65 25.47 1.89 11.93 -21.10

MCG-03-34-013 40.7 0.495 0.364 0.264 22.33 0.23 15.50 -17.55 21.05 0.22 14.19 -18.86 20.45 0.22 13.61 -19.44

aDistance of NGC 5018 is from Tully (1988); distances of NGC 5022 and MCG-03-34-013 are from NED.

bExtinction correction in the u, g and r band are from Burstein & Heiles (1982).

cDerived by integrating the growth curves and corrected for interstellar extinction.

Figure 5. Residual image obtained by subtracting from the VST g band image the galaxy model. The numbers indicate the
most luminous substructures for which we have estimated the integrated colors (see Sec. 4.3). The dashed polygon marks the
area over which we estimated the integrated magnitudes and colors of the intra group component (see Sec. 4.4.

ers with multi-component objects such as S0 or spiral

galaxies.

4.3. Color distribution

We have derived the azimuthally averaged, extinction

corrected (g - r) and (u - g) color profiles (Fig. 7, bot-

tom panel) and the 2D color maps centered on NGC

5018 (top and middle panels). On average, central re-

gions are bluer then the outer ones, but the colors are

consistent with those typically found for ETGs (La Bar-

bera et al. 2012). From both the color maps it is evident

the complex system of dust lanes in the center of the

galaxy.

Azimuthally averaged, extinction corrected, (g - r)

and (u - g) color profiles have been derived also for NGC

5022 and MCG-03-34-013, and are shown in the bottom

panels of Fig. 7.

By using the residual map shown in Fig. 5, we derived

the integrated (g - r) colors in the substructures stand-

ing out from this map. To this aim, after masking all

the bright sources, we define on the residual map a set

of polygons covering such substructures, and used them

to estimate the integrated colors, with the main goal
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Figure 6. Result of model fitting and division method em-
ployed to quantify the tidal disturbance of NGC 5018 (see
text). The image size is 6 × 5 arcmin. The overplotted blue
contours mark the substructures shown in Fig. 5 which are
also visible in this image.

to compare them with those of the galaxies belonging to

the group. In Fig. 8 we show the integrated colors of the

different polygons, compared with those of the galaxies

((g-r)NGC5018 = 0.67 ± 0.02, (g-r)NGC5022 = 0.73 ±
0.02, (g-r)MCG−03−34−013 = 0.62 ± 0.02), marked as

dashed red lines in the plot.

From this comparison, shown in Fig. 8, we can see

that substructures labelled as 1 ((g-r) = 0.97), 5 ((g-r)

= 0.9), 10 ((g-r) = 1.08), and 11 ((g-r) = 1.1) have colors

consistent with each other, but redder than those of the

galaxies in the group. This suggests that all the above

features are part of a single structure, which could have

an external origin, since its color is not compatible with

any of the galaxy in the group. Moreover, we can note

that the colors of these substructures are comparable

with those of the outskirts of both NGC 5018 and NGC

5022. The implications of this result will be discussed

in Sec. 8.

The colors of all the other identified substructures ap-

pear to be similar to that of NGC 5018, suggesting that

they could be part of the parent galaxy.

4.4. Integrated colors of the intra group light

We used the IRAF task POLYMARK to define a re-

gion in the residual map centered on NGC 5018 (see

Fig. 5) covering the bulk of intra group light (IGL).

Then we use POLYPHOT to derive the integrated mag-

nitudes in the g and r bands, and (g - r) color inside

this area. Foreground and background bright sources

have been masked and excluded from the estimate of

the integrated quantities (see also Iodice et al. 2017b).

The extinction corrected magnitudes and color derived

are mIGL
g = 11.39 ± 0.29 mag, mIGL

r = 10.61 ± 0.07

mag, and (g - r) = 0.78± 0.35 mag, and then the total

luminosity in the g band is LIGLg = 7.06× 1010L�. The

fraction of IGL, with respect to the total luminosity of

the group ( Lg = 1.7 × 1011L�) is about 41%, while

with respect to the dominant galaxy NGC 5018 ( Lg =

1.5×1011L�) is about 47%. The integrated (g - r) color

of the IGL component is consistent with those of the

galaxies in the group, within the errors.

Given that the IGL is composed of stars stripped from

galaxies, its color relative to the galaxies can give indica-

tions on the epoch when it was stripped. In particular,

if the IGL is redder than the group galaxies, it is likely

that stars have been stripped from the galaxies at early

times, while if the color of IGL is similar to that of galax-

ies, it is likely that this component have formed from the

ongoing stripping of stars (Krick et al. 2006).

The ongoing stripping scenario is consistent with our

results. Moreover, the color of the IGL component is

also roughly consistent, within the errors, with the color

of the outskirts of NGC 5018. Simulations by Willman

et al. (2004) predict that ∼ 50% of intragroup stars come

from bright galaxies, and as a consequence the color of

the intragroup stars should be consistent with the color

of the outskirts of bright group galaxies.

5. INFRARED ANALYSIS

As shown in the previous sections, the photometric

analysis in the optical bands has shown the presence of

a prominent and complex system of dust lanes crossing

the central regions of NGC 5018. Since the dust op-

tical depth decreases toward longer wavelengths, near-

infrared (NIR) photometry can help to reduce the dust

absorption, that strongly affects the starlight distribu-

tion in the galaxy. Moreover, adding some infrared

bands to the photometric analysis could help to better

understand the nature of the bridge connecting NGC

5018 to NGC 5022.

In this work we use images obtained with the Wide-

field Infrared Survey Explorer (WISE, Wright et al.

2010) in the w1 (3.368 µm) and w2 (4.618 µm) bands,

to perform the infrared photometric analysis for NGC

5018. The results of this analysis are shown in Fig. 9,

where we plot the ε and P.A. profiles (top panel), the

azimuthally averaged surface brightness profiles (middle

panel), and the mean (w1 - w2) color profile (bottom

panel).

In order to better constrain the nature of the sub-

structures observed in the optical residual map of NGC
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Figure 7. (g - r) (Top-left panel) and (u - g) (Top-right panel) color maps centered on NGC 5018. Bottom: Azimuthally
averaged, extinction corrected, (g - r) (left) and (u - g) (right) color profiles of NGC 5018 (black), NGC 5022 (red) and
MCG-03-34-013 (blue).

5018, we applied the same procedure described in Sec.

4.3 to the NIR residual map. We used the same poly-

gons obtained above (see Fig. 5), to estimate the inte-

grated NIR color of the substructure standing out form

the map. We also derived the integrated colors for NGC

5018 ((w1-w2)=0.02), NGC 5022 ((w1-w2)=0.05), and

MCG-03-34-013 ((w1-w2)=-0.01), in order to compare

them with the colors of the different substructures. The

results are shown in Fig. 10, where we plot the infrared

colors of the different substructures compared with those

of the three galaxies of the group.

This analysis confirms that also the NIR colors of

the substructures number 1 ((w1-w2)=0.1), number 5

((w1-w2)=0.09), as well as the bridge (labelled as 10,

((w1-w2)=-0.06)) and the loop (labelled as 11, ((w1-

w2)=0.22)) are not consistent with any of the galaxies

in the group, as already found from the optical colors.

6. ULTRAVIOLET ANALYSIS FOR NGC 5022

In order to detect the presence of hot and young stars

in the NGC 5018 group, we also performed a photo-

metric analysis in the ultraviolet (UV) bands. The

near-ultraviolet (NUV) profile of NGC 5018 has been

published by Rampazzo et al. (2007), while the far-

ultraviolet (FUV) profile is not published because of the

low S/N in the FUV band.

The FUV and NUV images of NGC 5022 used here,

were obtained from GALEX archive (see Martin et al.
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Figure 8. Integrated (g - r) colors in the 11 regions marked
on the residual image, Fig. 5. Red dashed lines represent the
integrated colors of the three main galaxies in the VST field
(see Fig. 1): NGC 5018, NGC 5022 and MCG-03-34-013.

2005; Morrissey et al. 2005). The exposure times were

4451 sec in NUV and 1568 sec in FUV bands (limiting

magnitude in FUV/NUV ∼ 22.6/22.7 AB mag Bianchi

2009).

We used FUV and NUV background-subtracted, in-

tensity images derived from the GALEX pipeline. FUV

and NUV magnitudes have been computed as m(AB)UV
= -2.5 × log CRUV +ZP, where CR is the dead-time-

corrected, flat-fielded count rate and the zero points are

ZP = 18.82 and ZP = 20.08 in the FUV and NUV re-

spectively (Morrissey et al. 2007).

Both FUV and NUV surface photometry have been

performed using the IRAF STSDAS ELLIPSE routine.

The resulting SB profiles are shown in Fig. 11. Our

measured NUV and FUV total magnitudes (NUV=16.6

± 0.03 and FUV=17.4 ± 0.07) are consistent within

errors with the one measured GALEX General Release

6. Both luminosity profiles are well fitted by a disk with

n=0.9 (see the bottom panel of Fig. 11).

As for the optical images we used the IRAF task

BMODEL to create a 2-D image and then we subtract

this model to the origin one. The residual images are

shown in Fig. 12. As we can see in the final images

(right panels) are well visible three bright regions in the

southern part of the disk. We suspect these are region

of star formation. For this reason we measured the flux
Figure 9. Top: ellipticity (ε) and position angle (P.A.) pro-
files for NGC 5018, in the Wise w1 (3.368 µm, blue points)
and w2 (4.618 µm, red points) bands. Middle: Azimuthally
averaged surface brightness profiles in the w1 (3.368 µm, blue
points) and w2 (4.618 µm, red points) bands. Bottom: Az-
imuthally averaged color profile.
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Figure 10. The same as Fig. 8 for the Wise w1 band.

of the three blobs visible. As a comparison we measured

the total NUV and FUV fluxes for the whole north part

of the galaxy.

Using the FUV flux we derived the present-day Star

Formation Rate (SFR) of each UV-bright blob (see the

bottom-right panel of Fig. 12) following Kennicutt

(1998), using its UV continuum luminosity and the re-

lation SFR (M�/yr) = 1.4 × 10−28 LFUV (erg/s/Hz).

The final results are reported in Tab. 4. As we can see

the SFR is the same in all the galaxy.

7. TOTAL ACCRETED MASS IN A LOOSE

GROUP OF GALAXIES

Following the procedure adopted by Spavone et al.

(2017), in order to define the different components dom-

inating the galaxies light distribution at different scales,

we have described the surface brightness profiles of NGC

5018 with a three component model: a Sérsic profile

(Sérsic 1963; Caon et al. 1993) for the centrally concen-

trated in situ stars, a second Sérsic for the “relaxed”

accreted component, and another Sérsic component for

the diffuse and “unrelaxed” outer envelope (Seigar et al.

2007; Donzelli et al. 2011; Arnaboldi et al. 2012; Cooper

et al. 2015; Iodice et al. 2016; Spavone et al. 2017).

The stellar population of the central in situ component

is expected to be similar to the dominant “relaxed” ac-

creted component, while the outer diffuse component

representing “unrelaxed” accreted material (‘streams’

and other coherent concentrations of debris) does not

Figure 11. Top: Azimuthally averaged surface brightness
profiles in the FUV (blue points) and NUV (red points)
bands. Bottom: The same profiles plotted in logarithmic
scale.

contribute significantly to the brighter regions of the

galaxy.

For the central ETG, NGC 5018, we used the same fit-

ting procedure described in Spavone et al. (2017), con-

sisting in fixing n ∼ 2 for the in situ component of our

three-component fit, in order to mitigate the degeneracy
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Figure 12. Top: FUV image of NGC 5022 (left), 2D model of the galaxy (middle), residual of the subtraction of the model
(right). Bottom: NUV image of NGC 5022 (left), 2D model of the galaxy (middle), residual of the subtraction of the model
(right).

Table 4. Integrated photometric UV properties

Object R.A. DEC mFUV (AB) FFUV LFUV mNUV (AB) FNUV LNUV FUV-NUV SFRFUV

(2000) (2000)

Galaxy 198.38 -19.54 17.4±0.07 1.84 4.08 16.6±0.03 1.27 2.82 0.8 5.7

A 198.373 -19.5578 18.42±0.19 0.75 1.64 17.64±0.21 0.65 1.44 0.92 2.32

B 198.3748 -19.5563 17.86±0.14 1.13 2.5 17.5±0.11 0.74 1.64 0.59 3.5

C 198.3741 -19.5528 18.02±0.09 0.98 2.18 17.27±0.08 1.00 2.22 0.75 3.05

Notes: (1) Coordinates are given in degrees. (2) Fluxes are in units of 10−27 erg s−1cm −2Hz−1. (3) Luminosities are in units
of 1026 erg s−1 Hz−1. (4) SFRs are in units of 10−2 M� yr−1
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in parameters in such kind of fit. This typical value of n

has been adopted on the basis of the results of Cooper

et al. (2013) for massive galaxies. The results of this fit

for NGC 5018, with the corresponding (O-C) residuals,

are shown in Fig. 13, both in logarithmic (top panel)

and in linear (bottom panel) scale, while the best-fitting

structural parameters for the fit are reported in Tab. 5.

The result of the fit show that the outer part of this

galaxy’s surface brightness profile is almost exponential

in nature, and in fact we checked that fitting an outer

exponential component to the surface brightness profile,

does not change the residuals and the shape of the total

fitted profile.

The surface brightness profiles of NGC 5022 and

MCG-03-34-013 have also been fitted with a three and

two component model, respectively, in which all the pa-

rameter were left free. The results of the fit are shown

in Fig. 14 and the best-fitting parameters are reported

in Tab. 5.

We used these fits to derive the total magnitude of

the different Sérsic components, mT,1, mT,2, and mT,3,

as well as the relative contribution of the accreted com-

ponent with respect to the total galaxy light, fh,T , re-

ported in Tab. 5. The total accreted mass fraction for

the galaxies in this small group, ranges between 78%

and 92%. These values are consistent with the results

of numerical simulations, which predict that stars ac-

creted by BCGs account for most of the total galaxy

stellar mass (Cooper et al. 2013, 2015; Pillepich et al.

2018).

These results can be used to estimate the stellar mass

fractions in the different components by assuming appro-

priate stellar mass-to-light ratios, in order to compare

the accreted mass ratios we infer from our observations

with other observational estimates for BCGs of similar

total mass by Seigar et al. (2007); Bender et al. (2015);

Iodice et al. (2016); Spavone et al. (2017), and with the-

oretical predictions from semi-analytic particle-tagging

simulations by Cooper et al. (2013, 2015), and the Illus-

tris cosmological hydrodynamical simulations (Pillepich

et al. 2018).

To this aim, we measured the mean (u - g) and (g

- r) colors for each galaxy in regions where the central

galaxies and the outer envelopes dominate, obtaining

the values reported in Tab. 6. We then used stellar

population synthesis models (Vazdekis et al. 2012; Ric-

ciardelli et al. 2012), with a Kroupa IMF, to derive the

mass-to-light ratios corresponding to the average colors,

and hence the stellar mass of the whole galaxy and of

the outer envelope. These results are summarized in

Table 6 and the comparison is shown in Fig. 15. Since

simulations used to compare the stellar halo mass frac-

Figure 13. VST g band profile of NGC 5018, in logarithmic
(top) and linear (bottom) scale, fitted with a three compo-
nent model motivated by the predictions of theoretical sim-
ulations (see Spavone et al. (2017)).

tion of our galaxies cover scales from the stellar haloes

of Milky Way-like galaxies to the cD envelopes of groups

and clusters. For this reason the comparison shown in

the Fig. 15 is meaningful only for the more massive

galaxy of the group.

We find that the stellar mass fraction of the accreted

component derived for the three main galaxies in the

NGC 5018 group is fully consistent both with published

data for other BCGs (Seigar et al. 2007; Bender et

al. 2015; Iodice et al. 2016; Spavone et al. 2017), de-
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Table 5. Best-fitting structural parameters for a three-component fit.

Object µe1 re1 n1 µe2 re2 n2 µe3 re3 n3 mT,1 mT,2 mT,3 fh,T

[mag/arcsec2] [arcsec] [mag/arcsec2] [arcsec] [mag/arcsec2] [arcsec] [mag] [mag] [mag]

NGC 5018 19.10±0.10 5.24±0.07 2 21.67 ±0.34 31.75±0.50 2.6±0.1 29.06±0.20 1502±7 1.8±0.2 12.16 10.77 9.79 92%

NGC 5022 20.15±0.50 3.00±0.20 1.26±0.35 21.55 ±1.27 12.27±2.90 0.60±0.20 26.38±0.32 87.61±7.6 3.00±0.62 14.38 12.72 13.28 88%

MCG-03-34-013 21.70±0.06 12.09±2.00 0.50±0.34 22.18 ±0.18 11.55±0.02 1.25±0.03 - - - 12.16 10.77 - 78%

Note—Columns 2, 3, and 4 report effective magnitude and effective radius for the inner component of each fit. The Sérsic
index for the in situ component of the BCG NGC 5018 was fixed to n ∼ 2 using the models as a prior (Cooper et al. 2013), as
explained in Spavone et al. (2017). We allowed small variations of ±0.5 around the mean value of n = 2. This would bracket
the range of n in the simulations and allows us to obtain a better fit. Columns 5, 6, 7, 8, 9 and 10 list the same parameters for
the second and the third components. Columns 11, 12, and 13 report the total magnitude of the inner (mT,1) and outer Sérsic
components (mT,2 and mT,3). Column 14 gives the total accreted mass fraction derived from our fit.

Table 6. Total and accreted stellar masses of galaxies in our sample.

Object (u − g) (g − r) (M/L)g M∗
tot M∗

total accreted

[mag] [mag] [M�/L�] [M�] [M�]

NGC 5018 1.6 ± 0.4 0.7 ± 0.2 1.97 2.9 × 1011 2.7 × 1011

NGC 5022 1.0 ± 0.4 1.6 ± 0.5 1.48 1.6 × 1010 1.4 × 1010

MCG-03-34-013 0.6 ± 0.1 1.4 ± 0.1 0.82 4.3 × 109 3.3 × 109

Note—Columns 2, 3 and 4 show the mean, extinction corrected, u - g and g-r colours of each galaxy and the relative
mass-to-light ratios in the g band. Columns 5 is the galaxy stellar mass, while column 6 reports the total accreted stellar

masses, derived from the three and two-component fit.

spite considerable differences in the techniques and as-

sumptions involved, and with the theoretical models by

Cooper et al. (2013, 2015) and by Pillepich et al. (2018).

8. DISCUSSION AND CONCLUSIONS

In this work we present a new deep mosaic of 1.2×1.0

square degrees of the group of galaxies centered on

NGC 5018, acquired at the ESO VLT Survey Telescope.

Taking advantage of the deep and multiband photome-

try (in u, g, r bands) and of the large field of view of the

VST telescope, we studied the structure of the galaxy

members and the faint feature into the intra-group space

and, then, we give an estimate of the intragroup diffuse

light in the NGC 5018 group of galaxies.

8.1. Tracing the build-up history of the group

NGC 5018, sometimes classified as E3, and at South-

East NGC 5022 which is an edge-on spiral, seem to be

linked by a very low surface brightness filament. Indeed,

many sources in the literature identify these two as an

interacting pair of galaxies.

The spiral at South-East shows no warp or obvious

signs of interaction, while N5018 exhibits a perturbed

morphology in the outskirts, with shells and ripples, as

well as inner dust signs. The HI map from the VLA (Fig.

1) indicates that there is a long tail of gas that connects

NGC 5022 to the another group member, MCG-03-34-

013, on the North-West with respect to NGC 5018. Such

a HI filament is on the north and does not crosses NGC

5018, although a branch of it does enter the galaxy.

Therefore, one open issue in the formation history of the

group is if the tails and all intra-group features visible

in the light distribution are tracing the same interaction

traced by the cold gas filaments.

Taking advantage by the multi-band observations

from VEGAS, we are able to estimate the integrated

colors of all the intra-group features (see Sec. 4.4). We

found that the integrated optical colors of all substruc-

tures (see Fig. 5), are not consistent with the average

colors of any of the galaxies in the group, being redder.

This is confirmed by estimating the NIR integrated col-

ors for the same regions and galaxies. Therefore, this

finding suggests an external origin for them.

Something similar was found for the bright galaxy

NGC 1316, in SW subgroup of the Fornax cluster (Iodice

et al. 2017a), where, by adopting the same approach

based on the color analysis, authors concluded that some

of the substructures in the envelope come from a recent

accretion event of smaller and bluer galaxy, while large

and redder tidal tail are more reasonably related to an

earlier interaction event.
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Figure 14. VST g band profiles of NGC 5022 (top), fitted
with a three components model, and MCG-03-34-013 (bot-
tom), fitted with a double Sersic model.

In NGC 5018, the analysis of the integrated colors

suggests that the plume at the NW side and all the sub-

structures in its central spheroid, are coeval with the

galaxy, given that they have comparable colors. These

features can thus be interpreted as material expelled

from NGC 5018 during a merging event in its forma-

tion history. Differently, the bridge between NGC 5018

and NGC 5022, the diffuse loop on the est side of NGC

5022, and the patches numbered as 1 and 5 on East

and SW side (see Fig.5), have both optical and NIR col-

ors not consistent with the average colors of any of the

Figure 15. Accreted mass fraction vs. total stellar mass for
ETGs. The measurement for NGC 5018 is given as red trian-
gle. Black circles correspond to other BCGs from the litera-
ture (Seigar et al. 2007; Bender et al. 2015; Iodice et al. 2016;
Spavone et al. 2017). Red region indicates the predictions of
cosmological galaxy formation simulations by Cooper et al.
(2013, 2015). Blue continuous and dashed regions indicate
the accreted mass fraction measured within 30 kpc and out-
side 100 kpc, respectively, in Illustris simulations by Pillepich
et al. 2018 (see their Fig. 12). Purple-grey points show the
mass fraction associated with the streams from Tab. 1 in
Cooper et al. (2015).

galaxies in the group, which are in the range g − r ∼
0.6 − 0.75 mag, being redder (g − r ∼ 0.9 − 1.1 mag,

see Fig.8). They are more similar to the colors in
the outskirts of NGC 5018 and NGC 5022, which are

g − r ∼ 0.9− 1.4 mag for 1 ≤ R ≤ 4 arcmin (see Fig.7).

Therefore, we claim that such a features could be made

by a stripped material from the galaxy outskirt in a close

passage. In particular, the almost polar half-ring on the

East side of NGC 5022 could formed by the interaction

with an high inclined orbit (see e.g. Bournaud & Combes

2003). Moreover, such an interaction might have trig-

gered the new star formation regions in the south part

of NGC 5022, as found from the analysis of the UV data

(see Sec. 6).

On the other hand, the long tail of HI gas is tracing

the interaction between NGC 5022 and MCG-03-34-013

(see also Kim et al. 1988; Guhathakurta et al. 1990).

8.2. Total accreted mass and intra-group light

estimates
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According to Spavone et al. (2017), by fitting the SB

profile of NGC 5018 with three Sérsic components, we

were able to have an estimate of the total accreted mass

in this galaxy, which is the brightest group member,

and for all the less brighter galaxies (see Sec7). We

found that the total accreted mass fraction for the galax-

ies in this small group, ranges between 78% and 92%.

These values are consistent with the results of numeri-

cal simulations by Cooper et al. (2013, 2015); Pillepich

et al. (2018) and with published data for other BCGs

(Seigar et al. 2007; Bender et al. 2015; Iodice et al. 2016;

Spavone et al. 2017), despite considerable differences in

the techniques and assumptions involved (see Fig.15).

The change in the trend of the ellipticity and P.A. with

radius appears to correlate with an inflection in the SB

profile of NGC 5018, which also marks the transition

between the two accreted components in the fit of the

light distribution (see Fig. 13). As already pointed out

in Spavone et al. (2017), such inflection could mark the

transition between two components in different states of

dynamical relaxation. The upward inflection of the pro-

file over the transition radius, occurs well beyond 2Re,

suggesting an excess of weakly-bound stars associated

with a recent accretion event. NGC 5018 shows clear

signs of ongoing interaction and accretion events, indi-

cating that its outer regions are still being assembled,

consistent with theoretical expectations for such galax-

ies (e.g. Cooper et al. 2015).

The total g-band luminosity of the IGL is LIGLg =

7.06 × 1010L�, which is ∼ 41% of the total luminosity

of the group. The IGL has (g - r) = 0.78 ± 0.35 mag,

which is similar to the color in the halo of the BCG in

the group core, NGC 5018, and consistent with the in-

tegrated colors of the other galaxies in the group. This

is consistent with that found in many compact group of

galaxies (Da Rocha & Mendes de Oliveira 2005; White et

al. 2003; Da Rocha et al. 2008), and with the prediction

of numerical simulations (Sommer-Larsen 2006). The

presence of IGL indicates that tidal encounters stripped

a considerable amount of mass from the member galax-

ies, and that the group is in an advanced stage of its

dynamical evolution (Da Rocha & Mendes de Oliveira

2005; Sommer-Larsen 2006; Rudick et al. 2006). Slow

encounters in group environment are in fact effective in

liberating stars in the intragroup medium, and since the

fraction of IGL increases with the degree of dynami-

cal evolution of the group/cluster, it can be used as a

“dynamical clock”: more evolved groups/clusters have

largest fractions of diffuse light.

Moreover, as already argued by Krick & Bernstein

(2007), the color of IGL and its correlation with the

color of galaxies in the group, could help to constrain

the epoch at which stars forming the IGL have been

stripped. In the case of NGC 5018, since the color of

the IGL component is consistent with those of galaxies

belonging to the group, the ongoing stripping scenario is

the most plausible for the formation of intragroup light

in this system.

As a conclusive remark, the picture emerging from the

multi-wavelength study illustrated in this work is that

there are at least two different interactions involving the

group members: one between the two brightest galax-

ies NGC 5018 and NGC 5022, which generates the tails

and ring-like structures detected in the light, and an-

other between the two gas-rich galaxies of the group,

NGC 5022 and MCG-03-34-013 that have produced the

long HI tail connecting the two systems. Moreover, a

minor merging event also happened in the formation his-

tory of NGC 5018 that have perturbed the inner struc-

ture of this galaxy.

The unperturbed isophotes of MCG-03-34-013 would

suggest that the interaction involving such a small

galaxy with NGC 5022 is more likely an high-velocity

encounter between them, while the gravitational forces

between the two bright group members were strong

enough to perturb the outskirts and generate intra-

group material.
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Muñoz, R. P., Eigenthaler, P., Puzia, T. H., et al. 2015,

ApJL, 813, L15

Murante, G., Arnaboldi, M., Gerhard, O., et al. 2004,

ApJL, 607, L83

Murante, G., Giovalli, M., Gerhard, O., et al. 2007,

MNRAS, 377, 2

Napolitano, N. R., Pannella, M., Arnaboldi, M., et al. 2003,

ApJ, 594, 172

Okamoto, S., Arimoto, N., Ferguson, A. M. N., et al. 2015,

ApJL, 809, L1

Pillepich, A., Nelson, D., Hernquist, L., et al. 2018,

MNRAS, 475, 648

Pohlen, M., & Trujillo, I. 2006, A&A, 454, 759

Purcell, C. W., Bullock, J. S., & Zentner, A. R. 2007, ApJ,

666, 20

Rampazzo, R., Marino, A., Tantalo, R., et al. 2007,

MNRAS, 381, 245

Rampazzo, R., Panuzzo, P., Vega, O., et al. 2013, MNRAS,

432, 374

Ricciardelli, E., Vazdekis, A., Cenarro, A. J., &

Falcón-Barroso, J. 2012, MNRAS, 424, 172

Rudick, C. S., Mihos, J. C., & McBride, C. 2006, ApJ, 648,

936

Seigar, M. S., Graham, A. W., & Jerjen, H. 2007, MNRAS,

378, 1575
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