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ABSTRACT

We present direct estimates of the mean sky brightness temperature in observing bands around 99GHz

and 242GHz due to line emission from distant galaxies. These values are calculated from the summed

line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies

using ALMA (the ’ASPECS’ survey). In the 99 GHz band, the mean brightness will be dominated

by rotational transitions of CO from intermediate and high redshift galaxies. In the 242GHz band,

the emission could be a combination of higher order CO lines, and possibly [CII] 158µm line emission

from very high redshift galaxies (z ∼ 6 to 7). The mean line surface brightness is a quantity that

is relevant to measurements of spectral distortions of the cosmic microwave background, and as a

potential tool for studying large-scale structures in the early Universe using intensity mapping. While

the cosmic volume and the number of detections are admittedly small, this pilot survey provides

a direct measure of the mean line surface brightness, independent of conversion factors, excitation,

or other galaxy formation model assumptions. The mean surface brightness in the 99GHZ band is:

TB = 0.94 ± 0.09µK. In the 242GHz band, the mean brightness is: TB = 0.55 ± 0.033µK. These

should be interpreted as lower limits on the average sky signal, since we only include lines detected

individually in the blind survey, while in a low resolution intensity mapping experiment, there will

also be the summed contribution from lower luminosity galaxies that cannot be detected individually

in the current blind survey.

Keywords: galaxies: formation, radio/FIR lines; submm: starbursts; physics: microwave background

spectrum

1. INTRODUCTION

Intensity mapping of the cumulative CO and other

millimeter and submillimeter line emission from early

galaxies has been proposed as a new means to probe

very large-scale structures in the distant Universe (Car-

illi 2011; Gong et al. 2011; Gong et al. 2012; Yue et al.

2015). Intensity mapping entails low spatial and spec-

tral resolution imaging of the sky to obtain the mean

brightness due to the cumulative emission from myr-

iad discrete cosmic sources. While interferometric ar-

rays like ALMA, the JVLA, and NOEMA, can detect

CO and [CII] 158µm (and in cases of high luminosity

sources, other lines), from individual galaxies at high

redshift, the fields of view are very small, and the inte-

gration times are long. These telescopes are inadequate
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for measuring the galaxy distribution on the very large

scales relevant to cosmological questions, such as the

Baryon Acoustic Oscillations at intermediate redshifts,

or the large-scale distribution of galaxies that reionize

the Universe. The latter is of particular interest for cross

correlation studies with very wide field, low-resolution

HI 21cm images of the intergalactic medium during cos-

mic reionization (Lidz et al. 2011).

The integrated millimeter and submillimieter line

emission from early galaxies has also been recognized

as a possible significant contaminant of measurements

of the spectral and spatial fluctuations of the cosmic

microwave background (CMB; Righi et al. 2008a,b;

Chluba & Sunyaev, 2012; de Zotti et al. 2015; Mashian

et al. 2016). For example, modeling suggests (Mashian

et al. 2016) that the integrated CO line emission could

be significantly higher than the primordial spectral dis-

tortions due to other cosmological effects (e.g., Chluba &

Sunyaev, 2012; Sunyaev & Khatri, 2013; Tashiro 2014),

and may be measurable with next generation instru-

ments like the Primordial Inflation Explorer (PIXIE;

Kogut et al. 2014).1

Numerous calculations have been done to predict the

mean sky brightness due to emission lines from CO at in-

termediate and high redshift, and [CII] 158µm emission

at very high redshift (see section 2). These predictions

are based on either empirical estimates using proxies for

the line emission, such as the cosmic star formation rate

density, or large scale cosmological simulations of galaxy

formation, with recipes to relate proxy measurements or

simulated properties to line luminosities.

In this paper, we present direct measurements of the

summed line luminosity from individual sources in bands

around 99 GHz and 242 GHz. These measurements

are based on the ASPECS program, corresponding to

a broad band spectral line deep field of the UDF at

1.25mm and 3mm (Decarli et al. 2016; Aravena et

al. 2016a; Walter et al. 2016). From these measure-

ment, we derive the mean brightness temperature at a

given observing frequency due to high redshift galaxies.

As a pilot study with ALMA, the fields are necessarily

small, and the number of galaxies few. However, the

measured quantity is direct: line emission from early

galaxies. Hence, no modeling or conversion factors are

required.

2. MODEL PREDICTIONS FOR THE LINE

BRIGHTNESS

1 PIXIE is a space observatory concept to map the CMB over
the frequency range 30GHz to 6THz, one goal of which is to con-
strain the average CMB energy spectrum with much greater ac-
curacy than FIRAS.

The dominant contribution to the integrated line

brightness from high redshift galaxies in the 99GHz

band is due to rotational transitions of CO from galaxies

at intermediate to high redshift. Other molecular trac-

ers, such as the high dipole moment molecules like HCN

and HCO+, are typically 10 times, or more, fainter than

CO, while the atomic fine structure lines would be from

galaxies at improbable redshifts (z ∼ 20; see Carilli &

Walter 2013). At 242GHz, the integrated line brightness

will be some combination of higher order CO lines from

intermediate and high redshift galaxies, plus a possible

contribution from [CII] 158µm line emission from galax-

ies at z ∼ 6 to 7, and other fine structure lines at lower

redshift. We consider each in turn.

Considering CO in the 99GHz band, predictions of

the mean CO sky brightness from early galaxies have

taken two approaches. First is an empirical use of the

measured evolution of the cosmic star formation rate

density, and/or the cosmic FIR background, converted

to CO luminosity by adopting a CO-to-FIR or star for-

mation rate conversion factor (Lidz et al. 2011; Righi

et al. 2008; de Zotti et al. 2015). A related calcula-

tion is to consider the star formation rate density re-

quired to reionize the neutral intergalactic medium at

high redshift, subsequently converted to CO luminosity

using said conversion factors (Carilli et al. 2011; Gong

et al. 2011). While based on celestial measurements,

these methods involve significant uncertainties inherent

in both the determination of the cosmic star formation

rate density, and more importantly, the assumed ’star

formation law’ relating CO luminosity to FIR luminos-

ity, or to star formation rate (Kennicutt & Evans 2012;

Carilli & Walter 2013). The latter may entail a dual

conversion of star formation rate to total gas mass, then

total gas mass to CO luminosity. There is the additional

uncertainty in the assumed gas excitation when model-

ing the contribution to the mean brightess at a given

observing frequency from different CO transitions from

galaxies at different redshifts.

The second method for predicting the mean CO sky

brightness is through cosmological numerical simula-

tions (Mashian et al. 2016; Gong et al. 2011; Li et

al. 2016). Such simulations can be normalized to eg. an

observed galaxy luminosity function at a given redshift,

although ultimately, even the most detailed simulations

rely on recipes to convert from simulated to observable

quantities. This is particularly difficult in the case of

tracer molecules, such as CO, while also including their

excitation state.

In summary, the predictions at around 100GHz for

the mean brightness from CO lines from intermediate

and high redshift galaxies range from 1.5µK (Righi et

al. 2008) to about 10µK (Marshian & Loeb 2016).

Two recent observations have set upper limits to the
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CO brightness from distant galaxies using CO inten-

sity mapping. The first entailed a cross correlation of

WMAP images with maps of very large-scale structures

from the SDSS, namely the photometric quasar sample

and the luminous red galaxy sample (Pullen et al. 2013).

The cross correlation technique removes numerous sys-

tematic errors. Pullen et al. estimate upper limits to the

mean brightness temperature of CO 1-0 or 2-1 of about

10µK in the 30 GHz to 90 GHz range. The second was

an interferometric measurement of the brightness fluc-

tuations at 30GHz using the Sunyaev-Zel’dovich Array

(Keating et al. 2015). Keating et al. quote an upper

limit to the CO 1-0 mean brightness of ∼ 5µK from

z ∼ 3 galaxies. Since both these measurements rely on

modeling of the spatial structure in the signal, they de-

pend on the assumed under-lying structural parameters.

Considering the 242GHz band, predictions also vary

considerably. The most detailed modeling to date, in-

cluding analysis of lines from CO, [CII], and [CI], is pre-

sented in Yue et al. (2015). They use large scale cosmo-

logical simulations, plus physically motivated conversion

factors (Vallini et al. 2015; Pallottini et al. 2015), to

derive the line luminosities from early galaxies. They

predict a [CII] 158µm brightness of ∼ 0.05µK around

242GHz from z ∼ 6.5 galaxies. At this frequency, they

obtain a similar contribution from the [CI] lines at rest

frame frequencies of 492GHz and 809GHz, from lower

redshift galaxies. The dominant line contribution to

the mean brightness at 242GHz in their models comes

from CO emission from galaxies at intermediate to high

redshift, for which they derive a mean brightness of

∼ 0.45µK. Note that, in their models, the [CII] contri-

bution increases rapidly with increasing observing fre-

quency, to ∼ 0.4µK at 316GHz (comparable to CO),

due to galaxies at z ∼ 5. Conversely, Gong et al. (2012)

perform an analytic calculation of the expected [CII] sur-

face brightness based on ISM physics and halo statistics,

and predict a substantially larger contribution of [CII]

at 242 GHz of ∼ 0.3µK.

3. ASPECS: A BLIND SEARCH FOR MILLIMETER

LINE EMISSION FROM HIGH REDSHIFT

GALAXIES

The ALMA spectral deep field observations (AS-

PECS) and results are described in Walter et al. (2016);

Aravena et al. (2016a); Decarli et al. (2016). In brief,

we surveyed a ∼ 1 arcmin2 field in the UDF to a 3-σ

depth of ∼ 0.05 Jy km s−1 (assuming line widths of 200

km s−1) over the frequency range 84–115 GHz (3 mm),

and of ∼ 0.13 Jy km s−1 over the frequency range 212–

272 GHz. In the analysis below, we adopt the mean fre-

quencies for each band, which are 99GHz and 242GHz.

The observations are sensitive to galaxies over a wide

range in redshift, depending on CO transition. The typ-

ical CO luminosity limits are ∼ 2×109 K km s−1 pc2 at

3mm and 6 × 108 K km s−1 pc2 at 1mm at 1 < z < 3.

The implied gas mass limits will depend on which CO

transition is being considered, at which redshift, and de-

pend critically on assumed CO excitation, in particular

for the high order transitions, since the total gas mass

is derived by extrapolation to low order. For reference,

at the typical redshifts and transitions of the detected

galaxies, these limits imply galaxies with gas masses of

3 to 10×109 M�, for a Galactic conversion factor of CO

1-0 luminosity to total molecular gas mass. We dis-

cuss this point further in Section 4.1. For [CII] at very

high redshift (z ∼ 6.5), our observations are sensitive

to galaxies with star formation rates ≥ 10 M� year−1,

using the de Looze et al. (2011) conversion.

Line emitting galaxies were identified using multi-

ple three dimensional search algorithms, and a series

of tests were made for completeness and fidelity (Wal-

ter et al.2016). Once a line candidate was identified, a

search was made for an optical or near-IR counterpart.

Decarli et al. (2016a) discuss how a given line is iden-

tified as a specific CO transition. In some cases, the

detection (or the lack of detection) of multiple CO tran-

sitions over the broad frequency range constrains the

redshift determination. If an optical/NIR counterpart

is present, literature information on the redshift of the

source (via spectroscopy or SED fitting of the photom-

etry) was also used. The lack of an optical counterpart

is used to rule out low redshift interpretations in some

cases. Ultimately, for some sources there can be ambi-

guity as to the transition in question, and therefore the

redshift. This is dealt with via a bootstrapping approach

(see Decarli et al. 2016a). However, in the context of

the analysis below, this is not an issue, since we sim-

ply sum all the lines detected in the blind survey in a

give observing band, independent of what transition and

redshift the line happens to be.

For completeness, Figure 1 shows a compilation of all

the candidate line detections in the survey, as presented

in Walter et al. (2016). There are a total of 21 can-

didate lines above 5σ. In 6 cases, line identifications

are unequivocally confirmed, through detection of other

CO transitions, and/or an optical galaxy with a spec-

troscopic redshift. For the rest of the lines, extensive

quantitative tests are made, and we only include lines

with a > 60% ’fidelity’ rating. See Decarli et al. (2016a)

for more details on the statistical analysis, and Walter

et al. (2016) for total intensity CO images, and optical

images, of all the candidates. At this fidelilty level, we

expect to have roughly as many spurious detections as

sources missing from the survey due to noise fluctuations

(Decarli et al. 2016a).

4. MEAN BRIGHTNESS TEMPERATURES
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Figure 1. Montage of all the > 5σ line candidates from
ASPECS blind survey (Walter et al. 2016). The red regions
show the spectral region over which the signal-to-noise was
calculated (see Decarli et al. 2016).

The mean line brightness temperatures are calculated

using an empirical approach of summing the lines de-

tected in the blind survey. The process is simple: Table

2 in Walter et al. (2016) lists the lines detected accord-

ing to the blind search criteria outlined in Section 3.

We sum the total flux from all the lines detected in a

given band, in Jy km s−1, which is equivalent dimen-

sionally to Jy Hz or ergs s−1 cm−2. We then divide

by the total band width covered in the blind survey,

which results in a mean flux density over the full band

and over the full field, Sν , in Jy. The mean brightness

temperature at the observed wavelength, λobs, is then

derived using the angular area of the field employed in

the blind search, Ωf , under the Rayleigh-Jeans appox-

imation: TB ∼ 1360 Sν λ
2
obs Ω−1

f K, where λobs is in

centimeters and Ωf is in arcseconds2.

For the 99GHz band, the total flux for the 10 lines

detected in the band is 2.53± 0.25 Jy km s−1 = (8.3±
0.08) × 105 Jy Hz. The total bandwidth is 31GHz, so

the mean flux density across the band is: Sν = (2.7 ±
0.27)×10−5 Jy. The field covered by the survey was 3600

arcsecond2. Hence, the mean brightness temperature,

TB = 0.94± 0.09µK.

For the 242GHz band, the total flux for the 11 lines

detected in the band is 6.93± 0.42 Jy km s−1 = (5.6±
0.34)×106 Jy Hz. The total bandwidth is 60GHz, so the

mean flux density across the band is: Sν = (9.3± 0.6)×
10−5 Jy. The field covered by the survey was also 3600

arcsecond2. Hence, the mean brightness temperature,

TB = 0.55± 0.033µK.

5. DISCUSSION

5.1. Limits

As a pilot ALMA study, we reemphasize that the vol-

umes in question are small, as are the number of detec-

tions. Hence, our conclusions and uncertainties are dom-

inated by cosmic variance and simple shot noise (Poisson

statistics). Aravena et al. (2016b) consider the issue of

cosmic variance in the context of our particular field.

Based on the drop-out galaxy counts, and the bright

submm source counts, this bias might be as large as a

factor two (low). On the other hand, consideration of

the contribution of faint submm continuum sources to

the cosmic infrared background, based on our deeper

ASPECS ALMA data, suggests a factor closer to unity

(Aravena et al. 2016b). Regardless, since this is a di-

rect survey of the observable in question, namely, mean

brightness due to line emission from distant galaxies at a

given observing frequency, the results remain of interest

in general progress toward millimeter line intensity map-

ping, and a factor two uncertainty is inconsequential for

our analysis in section 4.2.

Our measurements are also lower limits, since we only

sum lines detected. We do not extrapolate to, e.g., lower

or higher luminosity galaxies using an assumed luminos-

ity function. Considering CO (the dominant contributor

at 99GHz, certainly, and likely at 242 as well), our de-

tection threshold was set in order to reach what may be

the ’knee’ in the CO luminosity function at the primary

redshifts to which our survey is most sensitive (z ∼ 1

to 3). This estimation was based on both numerical

simulations and extrapolations of CO emission proper-

ties of high redshift galaxies from, e.g., measures of dust

luminosities or star formation rates (see Decarli et al.

2016a for more details). If the CO luminosity function

is relatively flat at low luminosities, and steep at high

luminosities, then galaxies around the knee of the curve

dominate the overall luminosity. For example, using the

Popping et al. (2016) and Lagos et al. (2012) CO lumi-

nosity functions and our limits at 99GHz, we estimate

that we should be detecting between 40% and 70% of

the total CO luminosity (Decarli et al. 2016) in this

dominant redshift range.

5.2. Comparison to predictions and CMB spectral

distortions

As stated in Section 1, millimeter line intensity map-

ping experiments will have broad impact, from studies

of galaxy formation to the Baryon Acoustic Oscillations.

In this section we consider in some detail our results in

the context of one topical area that has seen consider-

able attention recently, namely, the spectral distortions

of the CMB.
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In section 2, we reviewed the predictions for the line

brightness at 99GHz and 242 GHZ based on phenomeno-

logical calculations using on proxies for the line lumi-

nosity (such as the cosmic star formation density), or

numerical simulations of galaxy formation. Predictions

vary significantly, but range from ∼ 1µK to 10µK, in

the frequency ranges being considered. To within the

uncertainties inherent in small volume surveys, our di-

rect measurements of TB = 0.94±0.09µK at 99GHz and

TB = 0.55±0.033µK at 242GHz, argue for the faint end

of these predictions, although we again emphasize that

these should be treated as lower limits.

How do our measurements then compare to, for in-

stance, the expected distortions in the CMB spectrum

due to early energy release, and to the expected sensitiv-

ity of planned CMB spectral distortion experiments? As

a benchmark for experimental sensitivity, we adopt the

current parameters being considered for PIXIE (Kogut

et al. 2014; 2011), using the 15 GHz spectral resolution

for the proposed experiment. Considering the expected

sky brightness contributions, we focus on the more cos-

mologically relevant predictions, relating to recombina-

tion and reionization.

We note that there are other potentially significant

foregrounds, in particular, Galactic and extragalactic

thermal emission from warm dust, and synchrotron

emission. Kogut et al. (2014) review the relative magni-

tude of these contributions. The thermal emission from

warm dust, in particular, is calculated to be an order

of magnitude, or more, stronger than the summed mil-

limeter line emission considered herein. However, the

spectral behavior of the dust emission is considered to

be well understood, and should be well modelled, and

removed, using spectral fitting algorithms over a broad

frequency range. Herein, we focus on the millimeter

and sub-millimeter line emission, given that this is our

measured quantity, and compare it to the predicted cos-

mological signals. Additional discussion of foregrounds

can be found in, e.g., de Zotti et al. (2015).

In Fig. 3, we show a comparison of various distor-

tion signals, along with the line limits derived herein.

We focus on guaranteed distortions within ΛCDM (see

Chluba, 2016, for most recent overview), some of which

should be detectable with future experiments, at least

in terms of raw sensitivity (Kogut et al. 2011). A wider

range of range of energy release processes (e.g., decay-

ing particle scenarios) is discussed in Chluba 2013 and

Chluba & Jeong, 2014.

The largest CMB expected spectral distortion is cre-

ated at low-redshift by the reionization and structure

formation process (Sunyaev & Zeldovich, 1972; Hu et

al., 1994a). This signal is close to a pure Compton-y

distortion (Zeldovich & Sunyaev, 1969) caused through

partial up-scattering of CMB blackbody photons by hot
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Figure 2. Comparison of different CMB distortion signals
(negative branches of the signals are marked) with the mil-
limeter line limits reported in this paper. The low-redshift
distortion created by reionization and structure formation is
close to a y-distortion with y ' 2×10−6. Contributions from
the hot gas in low mass halos give rise to a noticeable rela-
tivistic temperature correction. For the damping signal, we
plot a µ-distortion with µ = 2× 10−8. The cosmological re-
combination radiation was computed using CosmoSpec. The
estimated effective sensitivity (∆Iν ≈ 5 Jy sr−1) of PIXIE is
shown for comparison (dotted line).

electrons yielding a y-parameter y ' 2× 10−6 (e.g., Re-

fregier et al. 2000; Hill et al., 2015). Contributions from

the hot gas (' 1keV) residing in low mass halos also give

rise to a noticeable relativistic temperature correction,

which could be used to constrain the average tempera-

ture of baryons at low redshifts (Hill et al., 2015). While

the relativistic correction signal requires a removal of the

integrated CO emission, the non-relativistic y-distortion

contribution should be less affected and already separa-

ble using multi-frequency capabilities of future experi-

ments.

Another inevitable distortion is created by the dissipa-

tion of small-scale fluctuations in the primordial photon-

baryon plasma (Sunyaev & Zeldovich, 1970; Daly, 1991;

Hu et al., 1994b; Chluba, Khatri, & Sunyaev 2012) due

to Silk damping. We illustrate the µ-distortion (Sun-

yaev & Zeldovich, 1970) contribution of this signal using

µ = 2×10−8, which is close to the value expected for the

ΛCDM cosmology (Chluba, 2016). A µ-distortion can

only be created in dense and hot environments present

in the early Universe at z & 5 × 104 (Burigana et al.,

1991; Hu & Silk, 1993). By detecting this signal one

can probe the amplitude of perturbations at scales far

smaller than those seen in the CMB anisotropies, deliv-

ering another independent way to test different inflation

models (e.g., Chluba, Khatri, & Sunyaev 2012; Chluba,

Erickcek & Ben-Dayan, 2012; Dent et al., 2012; Clesse

et al., 2014).

Finally, we show the cosmological hydrogen and he-



6 Carilli et al.

lium recombination radiation emitted at z ' 103 (Zel-

dovich et al., 1968; Peebles, 1968; Dubrovich, 1975;

Kholupenko et al., 2005; Rubiño-Mart́ın et al., 2006;

Chluba & Sunyaev 2006), which was computed using

CosmoSpec (Chluba & Ali-Häımoud, 2016). This signal

could provide an independent way to constrain cosmo-

logical parameters and directly map the recombination

history (Sunyaev & Chluba, 2009). It is unpolarized and

its unique spectral variability is very hard to mimic by

other foregrounds or instrumental effects.2

The latter two effects cause fractional spectral dis-

tortions in the range of 10−9 to 10−8, implying ob-

served brightness temperature perturbations ∆TB '
3nK − 30nK, well below the contribution of the mean

line brightness measured herein. Thus, beyond doubt,

an extraction of these primordial distortions will be

very challenging, requiring sophisticated foreground re-

moval techniques, unprecedented control of systemat-

ics, broad spectral coverage and high sensitivity multi-

frequency capabilities. To successfully remove the inte-

grated millimeter and submillimeter line emission, it will

be advantageous to exploit the synergies between future

CMB distortion measurements and observations similar

to those presented here. Given the importance of the

primordial distortion signals to studies of early-universe

physics, this direction is highly relevant.

As ALMA attains full capability, spectral deep fields

will become more efficient and effective, eventually en-

compassing areas of tens of square arcminutes. Our pilot

studies have already shown the impact of such measure-

ments over a broad range of problems in modern as-

trophysics and cosmology. In parallel, the Jansky Very

Large Array is exploring similar deep spectral searches

at 30GHz (eg. Lentati et al. 2015; Riechers et al. in

prep.), while the advent of high frequency spectral cam-

eras on the Green Bank Telescope provide a sensitive

platform for wide field spectral searches (Sieth et al.

2016). In the long term, a ’Next Generation Very Large

Array,’ operating between 20GHz and 115GHz with oc-

tave, or broader, bandwidth receivers and ten times the

collecting area of ALMA and the JVLA, has the po-

tential to revolutionize blind searches for molecular gas

in the early Universe (Carilli et al. 2015; Casey et al.

2015).
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