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A decade ago, the detection of the first1,2 transiting extrasolar planet provided a direct 

constraint on its composition and opened the door to spectroscopic investigations of 

extrasolar planetary atmospheres3. As such characterization studies are feasible only for 

transiting systems that are both nearby and for which the planet-to-star radius ratio is 

relatively large, nearby small stars have been surveyed intensively. Doppler studies4–6 and 

microlensing7 have uncovered a population of planets with minimum masses of 1.9–10 

times the Earth’s mass (M⊕), called super-Earths. The first constraint on the bulk 

composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the 

distance and size of its star preclude atmospheric studies in the foreseeable future. Here we 

report observations of the transiting planet GJ 1214b, which has a mass of 6.55M⊕ and a 

radius 2.68 times Earth’s radius (R⊕), indicating that it is intermediate in stature between 

Earth and the ice giants of the Solar System. We find that the planetary mass and radius 

are consistent with a composition of primarily water enshrouded by a hydrogen–helium 

envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping 

hydrodynamically, indicating that it has undergone significant evolution during its history. 

As the star is small and only 13 parsecs away, the planetary atmosphere is amenable to 

study with current observatories. 

The recently commissioned MEarth Project10,11 uses an array of eight identical 40-cm 

automated telescopes to photometrically monitor 2,000 nearby M dwarfs with masses between 
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0.10 and 0.35 solar masses (M


) drawn from a sample12 of nearby stars with a large proper 

motion. After applying a trend-filtering algorithm13 and a three-day running median filter to 

remove long-term stellar variability, we searched14 the light curves for evidence of periodic 

eclipsing signals. The light curve of the star GJ 1214 contained 225 data points, of which six 

values were consistent with having been gathered during a time of eclipse and indicating a signal 

with a period of 1.58 days. On the basis of this prediction, we gathered additional photometric 

observations at high cadence using the eight telescopes of the MEarth array as well as the 

adjacent 1.2-m telescope. These light curves (shown in Fig. 1) confirm that the star is undergoing 

flat-bottomed eclipses with a depth of 1.3%, indicative of a planetary transit. Astrophysical false 

positives that result from blends of eclipsing binary stars and hinder field transit surveys are 

not10,11 a concern under the strategy of the MEarth survey. GJ 1214 has a large proper motion, 

and by examining archival images we established that no second star lies at the current sky 

position of GJ 1214, ruling out a blend resulting from an eclipsing binary that is not physically 

associated with the target. The measured parallax and photometry of GJ 1214 (Table 1) place 

stringent constraints on the presence of an unresolved physically associated binary companion: 

we find no physically plausible coeval model that matches both the observed transit depth and 

the short duration of ingress and egress. We subsequently used the HARPS5,6 instrument to 

gather radial velocity observations (Fig. 2 and Supplementary Information), which confirmed the 

planetary nature of the companion and permitted us to estimate its mass. 

Table 1 presents our estimates of the physical quantities for planet and star. We estimate 

the planetary equilibrium temperature to be as great as 555 K (the case for a Bond albedo of 0) 

and as low as 393 K (assuming a Bond albedo of 0.75, the same as that for Venus). This latter 

value is significantly cooler than all known transiting planets, and exceeds the condensation 

point of water by only 20 K. This consideration is significant, because it demonstrates that for M 

dwarfs the discovery of super-Earths within the stellar habitable zones is within reach of ground-

based observatories such as MEarth, whereas the discovery of such objects orbiting solar 

analogues is thought to require space-based platforms such as the Kepler Mission15. 

We compare in Fig. 3 the measured mass and radius of GJ 1214b with that of models16 

that predict planetary radii as a function of mass and assumed composition. We consider a 

hypothetical16 water-dominated composition (75% H2O, 22% Si and 3% Fe) and take this 

prediction to be an upper bound on the planet radius, assuming a solid composition. This model 
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provides a minimum mass for the gaseous envelope: assuming that the envelope is isothermal 

(with a temperature corresponding to a Bond albedo of 0, above) and composed of hydrogen and 

helium, and that the observed planetary transit radius corresponds17 to an atmospheric pressure of 

1 mbar, we estimate a scale height of 233 km and a total envelope mass of 0.0032M⊕ (0.05% of 

the planetary mass). In this model, the relative mass of the envelope to the core is much smaller 

than that for the ice giants of the Solar System. If we continue under this assumed composition 

and consider both the Solar System planets and the extrasolar worlds together in Fig. 3, the 

sequence decreasing in mass from HD 149026b and Saturn to HAT-P-11b, GJ 436b, Neptune 

and Uranus, and finally GJ 1214b would then trace an atmospheric depletion curve: the mass of 

the gaseous envelope relative to that of the core would decrease with mass, which is consistent 

with the fact that the atmospheres of Earth and Venus are each only a trace component by mass. 

We note, however, that with only an estimate of the average density, we cannot be certain that 

GJ 1214b, GJ 436b and HAT-P-11b do not have compositions significantly different from that 

assumed above. For example, these planets could contain cores of iron or silicates enshrouded by 

much more massive envelopes of hydrogen and helium, a situation that would challenge models 

of formation but is not excluded by the current observations. 

Our estimate of the stellar radius is 15% larger than that predicted by theoretical models18 

for the stellar mass we derived. Such discrepancies are well established from observations of M-

dwarf eclipsing binaries, and indeed a similar stellar radius enhancement was determined19 for 

the only other M-dwarf with a known transiting planet, GJ 436. If the true value of the stellar 

radius is 0.18R


 (as predicted by both the theoretical models18 and an empirical radius relation20 

for low-mass stars), then the planet radius would be revised downwards to 2.27R⊕, which is 

consistent with a water-dominated composition without the need for a gaseous envelope. If the 

empirical relation21 for angular diameter can be extended to this spectral type, this would provide 

an alternative estimate of the stellar radius, given a refined estimate of the parallax. 

We considered the timescale for hydrodynamic escape of a hydrogen-dominated 

envelope. Assuming that the ultraviolet luminosity of the star is 10−5 of its bolometric luminosity 

(typical22 for inactive field M dwarfs), we calculate23 a hydrodynamical escape rate of 

9 × 105 kg s−1; we further verified that at the sonic point the mean free path is only 4% of the 

scale height. At this rate, the minimum-mass envelope described above would be removed in 



Charbonneau et al. Nature 2009        A super-Earth transiting a nearby low-mass star  Page 4 of 13 
 

about 700 Myr. The stellar ultraviolet radiation was probably much larger when the star was 

young, which would result in an even shorter timescale for removal of the envelope. An age of 

3–10 Gyr for the star is supported24 both by its kinematics (which indicate that it is a member of 

the old disk) and the lack of chromospheric activity from the absence of Hα line emission. 

Moreover, the dominant periodicity in the MEarth photometry is 83 days. Stars spin down as 

they age, and a very long rotation would also indicate an old star. Thus we conclude that 

significant loss of atmospheric mass has occurred over the lifetime of the planet; the current 

envelope is therefore probably not primordial. Moreover, some (or all) of the present envelope 

may have resulted from outgassing and further photodissociation of material from the core. If the 

composition of the gaseous envelope is indeed dominated by hydrogen (whether primordial or 

not), the annulus of the transmissive portion of planetary atmosphere would occult roughly 

0.16% of the stellar disk during transit and thus present a signal larger than that already studied 

for other exoplanets3. Thus GJ 1214b presents an opportunity to study a non-primordial 

atmosphere enshrouding a world orbiting another star. Such studies have been awaited25 and 

would serve to confirm directly that the atmosphere was predominantly hydrogen, because only 

then would the scale height be large enough to present a measurable wavelength-dependent 

signal in transit. 

The discussion above assumes that the solid core of GJ 1214b is predominantly water. 

This is at odds with the recently discovered8,9 CoRoT-7b, the only other known transiting super-

Earth. CoRot-7b has mass of 4.8M⊕, a radius of 1.7R⊕ and a density of 5,600 kg m−3, indicating a 

composition that is predominantly rock. The very different radii of GJ 1214b and CoRoT-7b 

despite their indistinguishable masses may be related to the differing degrees to which the two 

planets are irradiated by their parent stars: owing to the much greater luminosity of its central 

star, CoRoT-7b has an equilibrium temperature of about 2,000 K, roughly fourfold that of 

GJ 1214b. It may be that both planets have rocky cores of similar mass and that it is only for 

CoRoT-7b that the gaseous envelope has been removed, yielding the smaller observed radius. 

Alternatively, GJ 1214b may have a water-dominated core, indicating a very different formation 

history from that of CoRoT-7b. Such degeneracies in the models16 of the physical structures of 

super-Earths will be commonplace when only a radius and mass are available, but at least one 

method25 has been proposed to mitigate this problem in part. The differences in composition 

between GJ 1214b and CoRoT-7b bear on the quest for habitable worlds: numerous planets with 
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masses indistinguishable from those of GJ 1214b and CoRoT-7b have been uncovered indirectly 

by radial velocity studies, and some of these lie in or near their stellar habitable zones. If such 

cooler super-Earth planets do indeed have gaseous envelopes similar to that of GJ 1214b, the 

extreme atmospheric pressure and absence of stellar radiation at the surface might render them 

inhospitable to life as we know it on Earth. This would motivate the push to even more sensitive 

ground-based techniques capable of detecting planets with sizes and masses equal to that of the 

Earth orbiting within the habitable zones of low-mass stars. 
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Figure 1 | Photometric data for GJ 1214. Light curves of GJ 1214 spanning times of transit for 

four separate transit events, gathered with the MEarth Observatory (either a single telescope or 

eight telescopes, denoted respectively as MEarth × 1 and MEarth × 8) and the F. L. Whipple 

Observatory (FLWO) 1.2-m telescope. All light curves have been binned to a uniform cadence of 

45 s to facilitate a visual comparison. We fitted the unbinned light curves to a model29 

corresponding to a planet in a circular orbit transiting a limb-darkened star, setting the limb-

darkening coefficients to match the inferred stellar properties as described in the text. This model 

has five parameters: the orbital period P, the time of transit centre Tc, the ratio of the radius of 

the planet to that of the star Rp/Rs, the ratio of the semimajor axis to the stellar radius a/Rs, and 

the orbital inclination i. We use a Markov chain Monte Carlo method to estimate the 

uncertainties, and our results are stated in Table 1. The solid lines show the best-fit model fitted 

simultaneously to all the data. 

Figure 2 | Change in radial velocity of GJ 1214. a, We gathered 21 observations during 2009 

July 24 to 2009 August 6, and six observations during 2009 June 11–19. We estimate30 the 

change in the radial velocity by first constructing a stellar template by summing the observations 

(corrected to the barycentre), and then minimizing the χ2 difference between this template and 

each spectrum. We initially restricted our analysis to the July–August data (shown as filled 

points, with repetitions shown as open symbols), out of concern that long-term stellar variability 

or a second planet could lead to an offset between these data and those gathered in June (not 

shown). We fitted a sinusoidal model (solid curve) constrained by the photometric period and 

time of transit (dotted lines) and found a good fit (χ2 = 15.98 for 19 degrees of freedom) with a 

semi-amplitude of K = 12.2 ± 1.6 m s−1. We considered an eccentric orbit, and found that the 

best-fit model (χ2 = 13.02 for 17 degrees of freedom) was not significantly better and yielded an 

indistinguishable K. We conclude that there is no evidence that the orbit is non-circular, and we 

state the upper limit in Table 1. We then included the June observations and found 
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K = 12.4 ± 1.8 m s−1, which is consistent with but noisier than the previous estimate. However, to 

obtain a χ2 consistent with an acceptable fit, we need to introduce an additional noise term of 

2.7 m s−1, or an offset of −8 m s−1 from the June data to the July–August data. Our photometry 

indicates that the stellar brightness varies by 2% on timescales of several weeks. We conclude 

that spot-induced stellar jitter is the most likely explanation. b, Residuals of the July–August data 

to the sinusoidal model. The residuals are consistent with the internal estimates of the 

uncertainties, shown here as 1σ error bars.  

Figure 3 | Masses and radii of transiting planets. GJ 1214b is shown as a red filled circle (the 

1σ uncertainties correspond to the size of the symbol), and the other known transiting planets are 

shown as open red circles. The eight planets of the Solar System are shown as black diamonds. 

GJ 1214b and CoRoT-7b are the only extrasolar planets with both well-determined masses and 

radii for which the values are less than those for the ice giants of the Solar System. Despite their 

indistinguishable masses, these two planets probably have very different compositions. 

Predicted16 radii as a function of mass are shown for assumed compositions of H/He (solid line), 

pure H2O (dashed line), a hypothetical16 water-dominated world (75% H2O, 22% Si and 3% Fe 

core; dotted line) and Earth-like (67.5% Si mantle and a 32.5% Fe core; dot-dashed line). The 

radius of GJ 1214b lies 0.49 ± 0.13 R⊕ above the water-world curve, indicating that even if the 

planet is predominantly water in composition, it probably has a substantial gaseous envelope. 
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Table 1 | System parameters for GJ 1214 
Parameter Value 
Orbital period, P (days) 1.5803925 ± 0.0000117 
Times of centre of transit, Tc (HJD) 2454964.944208 ± 0.000403 
 2454980.7479702 ± 0.0000903 
 2454983.9087558 ± 0.0000901 
 2454999.712703 ± 0.000126 
Planet/star radius ratio, Rp/Rs 0.1162 ± 0.00067 
Scaled semimajor axis, a/Rs 14.66 ± 0.41 
Impact parameter, b 0.354+0.061

−0.082 
Orbital inclination, i (deg) 88.62+0.35

−0.28 
Radial velocity semi-amplitude, K (m s−1) 12.2 ± 1.6 
Systemic velocity, γ (m s−1) −21,100 ± 1,000 
Orbital eccentricity, e <0.27 (95% confidence) 
Stellar mass, Ms 0.157 ± 0.019M


 

Stellar radius, Rs 0.2110 ± 0.0097R

 

Stellar density, ρs (kg m−3) 23,900 ± 2,100 
Log of stellar surface gravity (CGS units), log gs 4.991 ± 0.029 
Stellar projected rotational velocity, v sin i (km s−1) <2.0 
Stellar parallax (mas) 77.2 ± 5.4 
Stellar photometry  
 V 15.1 ± 0.6 
 I 11.52 ± 0.1 
 J 9.750 ± 0.024 
 H 9.094 ± 0.024 
 K 8.782 ± 0.020 
Stellar luminosity, Ls 0.00328 ± 0.00045L


 

Stellar effective temperature, Teff (K) 3,026 ± 130 
Planetary radius, Rp 2.678 ± 0.13R⊕ 
Planetary mass, Mp 6.55 ± 0.98M⊕ 
Planetary density, ρp (kg m−3) 1870 ± 400 
Planetary surface acceleration under gravity, gp (m s−2) 8.93 ± 1.3 
Planetary equilibrium temperature, Teq (K)  
 Assuming a Bond albedo of 0 555 
 Assuming a Bond albedo of 0.75 393 
To convert the photometric and radial velocity parameters into physical parameters for the system, we 
require a constraint on the stellar mass. Using the observed parallax distance26 of 12.95 ± 0.9 pc and 
apparent K-band brightness, we employ an empirical relation27 between stellar mass and absolute K-
band magnitude to estimate the stellar mass. With this value we find the planetary radius and mass. The 
uncertainty on the planet mass is the quadrature sum of the propagated uncertainties on the radial-
velocity amplitude and those from the uncertainty in the stellar mass, which contribute 0.85M⊕ and 
0.50M⊕ to the error budget, respectively. We use the observed I − K colour and an empirical relation28 to 
estimate the bolometric correction and subsequently the stellar luminosity and stellar effective 
temperature (assuming the stellar radius quoted in the table). Using the luminosity, we estimate a 
planetary equilibrium temperature, assuming a value for the Bond albedo. HJD, heliocentric Julian date. 
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