

Los 10 principales descubrimientos de ESO

- Observatorio Europeo Austral Alcanzando nuevas alturas en Astronomía
- Explorando el Universo desde el Desierto de Atacama (Chile), desde 1964
- ESO es el observatorio astronómico más productivo del mundo

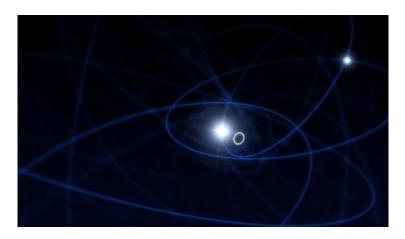
La Silla : El primer observatorio de ESO

- Dos de los telescopios de 4 metros más productivos del mundo
 - Telescopio ESO 3,6 m, desde 1976
 - El New Technology Telescope NTT (3,58 m), desde 1989
- 300 publicaciones arbitradas por año


Los 10 principales descubrimientos de ESO

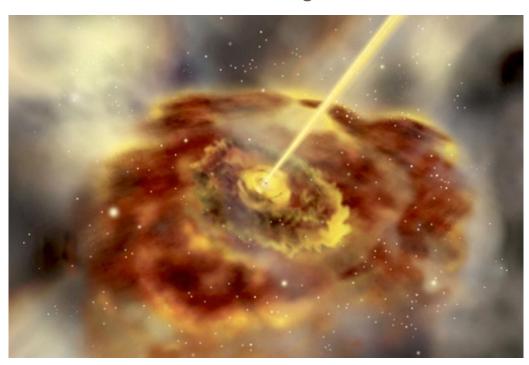
- 1. Estrellas en órbita alrededor del agujero negro del centro de la Vía Láctea
- 2. Universo en aceleración
- 3. Primera imagen de un exoplaneta
- 4. Estallidos de rayos gamma las conexiones con supernovas y con choques entre estrellas de neutrones
- 5. Medición independiente de la temperatura cósmica
- 6. La estrella más antigua en la Vía Láctea
- 7. Destellos desde el agujero negro súper masivo en el centro de la Vía Láctea
- 8. Análisis directo del espectro de exoplanetas y sus atmósferas
- 9. El más rico sistema planetario
- 10. Movimientos de estrellas dentro de la Vía Láctea

Más información en: http://www.eso.org/public/science/top10.html



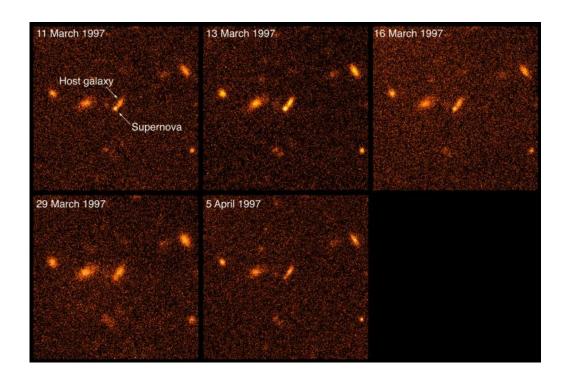
- Descubrimiento: estudio sin precedentes siguiendo durante 16 años las estrellas en órbita alrededor del agujero negro de la Vía Láctea
- Cuándo: comenzó en 1992, con más de 50 noches de observación en total
- Instrumentos / telescopios:
 - SHARP / NTT, Observatorio La Silla
 - NACO / Yepun (UT4), VLT
- Ver comunicados de prensa eso0226 y eso0846: http://www.eso.org/public/news/eso0226/ http://www.eso.org/public/news/eso0846/

Los 10 principales descubrimientos de ESO, 26 abril 2011

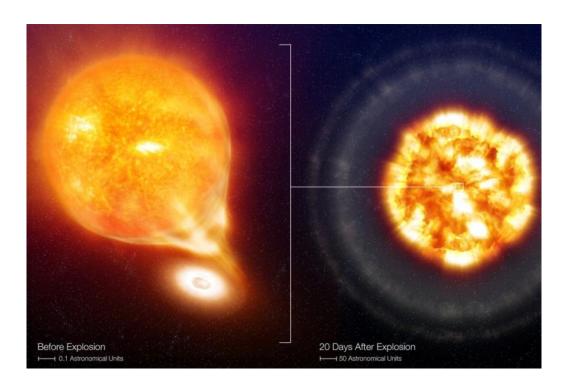


- Las observaciones:
 - Las imágenes de más alta resolución del centro de nuestra galaxia
 - S2, la estrella que más se aproxima a Sgr A*, está orbitando el centro galáctico muy cerca y rápidamente (acercándose hasta 17 horas-luz)
- Conclusión: el centro de la Vía Láctea alberga un agujero negro súper masivo, de cuatro millones de masas solares

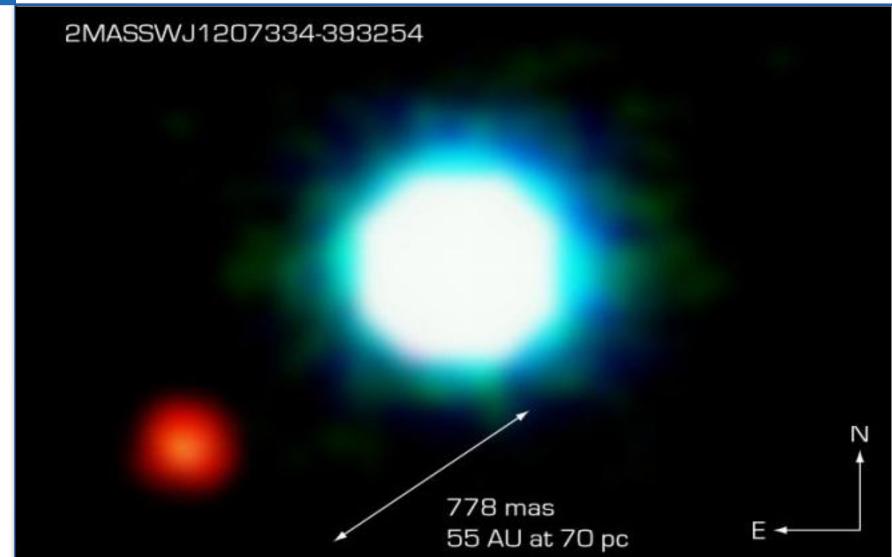
- En contexto:
 - Emisiones de rayos X desde el centro de la Vía Láctea ya habían indicado la presencia de un agujero negro súper masivo
 - Los cuásares son alimentados por agujeros negros súper masivos
- Implicaciones: puede haber agujeros negros súper masivos en los centros de muchas otras galaxias



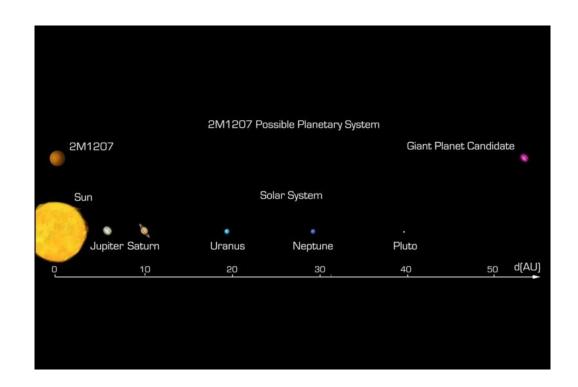
- Descubrimiento: supernovas distantes indican Universo en aceleración
- Telescopios: ESO 3,6 m y NTT, La Silla
- Dos equipos independientes de astrónomos
- Más información en comunicado de prensa eso9861: http://www.eso.org/public/news/eso9861/



- Las observaciones: distancias de supernovas de tipo la son mayores que lo esperado
- Conclusión: la expansión del Universo se acelera
- Escenario previo: el Universo se contraería en un "Gran Colapso" o se expandiría para siempre, pero en ambos casos se pensaba que la expansión se desaceleraba
- Implicaciones:
 - Edad del Universo ~ 14.000 millones de años
 - Confirmación de la inflación (expansión a tasas exponenciales en las etapas tempranas de la vida del Universo)
 - Energía oscura: la fuerza repulsiva misteriosa que acelera al Universo

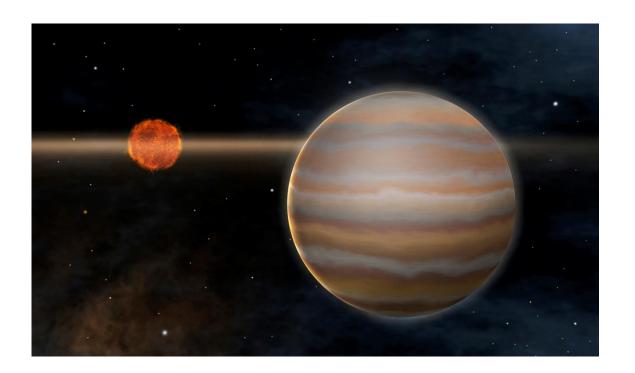


- Supernovas de tipo la: los mejores indicadores de distancia
 - Tienen propiedades muy uniformes (casi el mismo brillo intrínseco)
 - Son muy brillantes y pueden detectarse a grandes distancias



- Descubrimiento: el VLT captura la primera imagen de un planeta fuera de nuestro Sistema Solar
- La estrella 2M1207 está a 230 años luz de distancia, en la constelación de Hydra
- Cuándo: primera detección en abril de 2004; confirmación en abril de 2005
- Instrumento / telescopio: NACO / Yepun (UT4), VLT
 - NACO trabaja con óptica adaptativa
- Más información en los comunicados de prensa eso0428 y eso0515: http://www.eso.org/public/news/eso0428/
 http://www.eso.org/public/news/eso0515/
- Las observaciones:
 - Se obtuvo una imagen de 2M1207b por primera vez con el VLT en el 2004
 - Sus características y naturaleza planetaria fueron confirmadas en 2005 luego de un año de observaciones

· Conclusiones:


- 2M1207b es un planeta tipo Júpiter, pero cinco veces más masivo
- Orbita la enana marrón 2M1207A a una distancia 55 veces mayor que la distancia Tierra-Sol.
- Su espectro muestra fuertes señales de la presencia de moléculas de agua



En contexto:

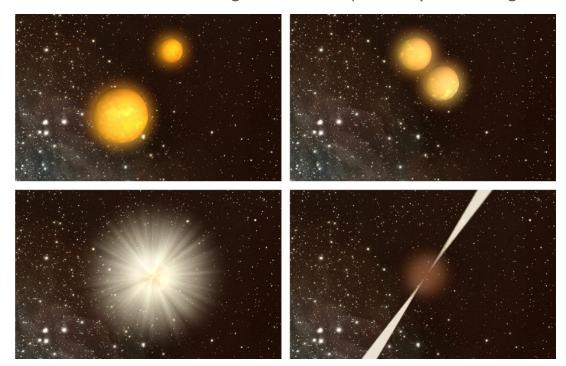
- El primer exoplaneta descubierto alrededor de una estrella de secuencia principal: 51 Pegasi, en 1995
- En 2004: 120 exoplanetas descubiertos
- En 2011: más de 500 exoplanetas (sólo unos 10 tienen imágenes directas)

- Descubrimiento: estallidos de rayos gammas de larga duración (>2s)
 están relacionados con la explosión de estrellas masivas, mientras que
 los estallidos de corta duración se originan de la colisión violenta entre
 dos estrellas de neutrones
- Cuándo: estallido de larga duración detectado el 29 de marzo de 2003 y observado durante 1 mes; dos estallidos de corta duración detectados el 9 de mayo y el 9 de julio de 2005
 - Para estallidos de larga duración: UVES, FORS1, FORS2 / Kueyen, Antu (UT1, UT2), VLT
 - Para estallidos de corta duración: Telescopio Danés de 1,54 m, La Silla;
 FORS1, FORS2 / Antu, Kueyen (UT1, UT2), VLT
- Más información en comunicados de prensa eso0318 y eso0533: http://www.eso.org/public/news/eso0318/
 http://www.eso.org/public/news/eso0533/

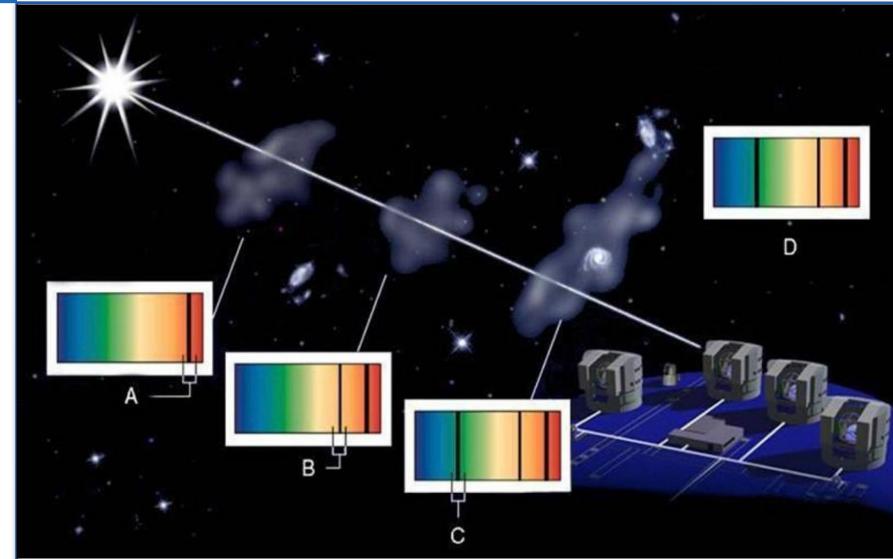
Las observaciones:

- Estallidos de larga duración
 - Espectro detallado e imágenes del brillo óptico residual de GRB 030329
 - Distancia de GRB 030329 = 2650 millones de años-luz
- Estallidos de corta duración
 - Se observa el brillo óptico residual de un esquivo estallido de corta duración
 - Distancia de GRB 050509B = 2700 millones de años-luz
 - Duración de GRB 050509B = 40 milisegundos
 - No hay indicio de explosión de SN durante las tres semanas posteriores al estallido

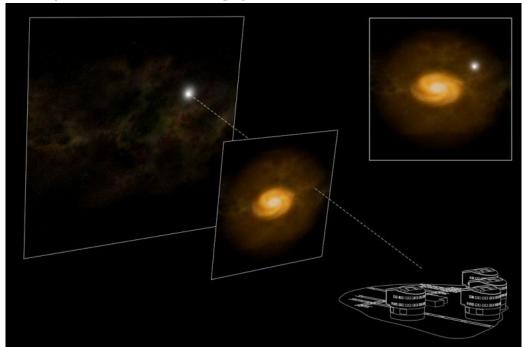
Conclusiones:


- El estallido de larga duración es producido por una hipernova, la explosión de una estrella muy masiva (más de 25 veces más masiva que el Sol)
- Los estallidos de corta duración se dieron en una galaxia elíptica sin formación estelar activa, donde:
 - Se descarta la posibilidad de hipernova
 - Se espera encontrar muchos sistemas binarios de estrellas compactas como posibles progenitores

• En contexto:


- Los estallidos de rayos gamma han sido detectados desde 1960
- El GRB 030329 ha sido un evento raro, que marcó un hito en la astrofísica de altas energías
- Antes de 2005, el brillo óptico residual sólo había sido observado para estallidos de larga duración (desde pocos segundos a pocos minutos)

Los 10 principales descubrimientos de ESO, 26 abril 2011

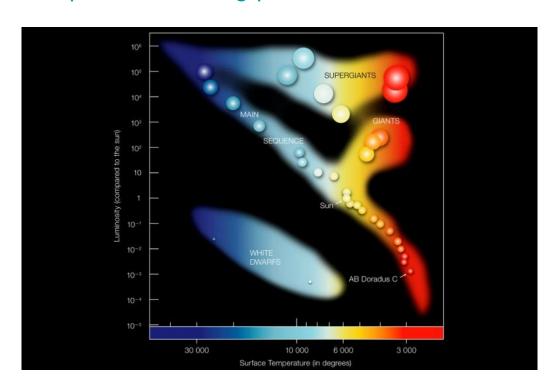

5. Medición independiente de la temperatura cósmica

5. Medición independiente de la temperatura cósmica

- Descubrimiento: primera medición precisa de la temperatura de la radiación de fondo cósmico en una época temprana del Universo
- Instrumento / telescopio: UVES / Kueyen (UT2), VLT
- Estudio pionero de la química interestelar a alto desplazamiento al rojo
- Más información en comunicado de prensa eso0813: http://www.eso.org/public/news/eso0813/

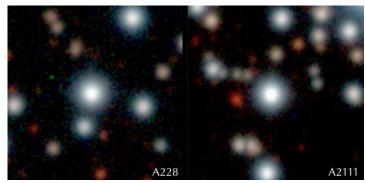
5. Medición independiente de la temperatura cósmica

- Las observaciones:
 - Moléculas de monóxido de carbono detectadas en una galaxia a ~11 mil millones de años-luz de distancia
 - Esta galaxia es detectable sólo a través de la huella que su propio gas deja en el espectro de un cuásar mucho más distante, usado como faro
- Conclusiones:
 - Temperatura = $9.15 \pm 0.7 \text{ K}$
 - Medición de la temperatura del fondo cósmico más precisa, en excelente acuerdo con la teoría
 - Las condiciones físicas del gas en esta galaxia son muy parecidas a las condiciones del gas en nuestra galaxia
- Implicaciones: el estudio detallado de la química del medio interestelar es una herramienta muy útil para:
 - Entender la formación de galaxias
 - Obtener una medida independiente de la temperatura de la radiación del fondo cósmico


6. Estrella más antigua en la Vía Láctea

6. Estrella más antigua en la Vía Láctea

- Descubrimiento: se mide la edad de la estrella más antigua de la Vía Láctea
- Instrumento / telescopio: UVES / Kueyen (UT2), VLT
- Más información en comunicados de prensa eso0425 y eso0106: http://www.eso.org/public/news/eso0425/ http://www.eso.org/public/news/eso0106/


6. Estrella más antigua en la Vía Láctea

Las observaciones:

- Primera medición del contenido de berilio en dos estrellas del cúmulo globular NGC 6397
- El intervalo de tiempo entre la formación de la primera generación de estrellas y la edad de un cúmulo estelar conocido fue calculada usando las abundancias de berilio

Conclusiones:

- Las primeras estrellas de la Vía Láctea se formaron durante los primeros 200 millones de años después del Big Bang
- Estos datos concuerdan con la edad del Universo calculada por la cosmología
- Implicación: el "reloj de berilio" proporciona información única y vital sobre la duración de las etapas tempranas de la vida de la Vía Láctea

7. Destellos desde el agujero negro súper masivo en el centro de la Vía Láctea

7. Destellos desde el agujero negro súper masivo en el centro de la Vía Láctea

- Descubrimiento: la primera detección simultánea en onda IR y submilimétricas de destellos desde el agujero negro súper masivo de la Vía Láctea
- Instrumentos / Telescopios:
 - NACO / Yepun (UT4), VLT
 - LABOCA / APEX
- Más información en el comunicado de prensa eso0841: http://www.eso.org/public/news/eso0841/

7. Destellos desde el agujero negro súper masivo en el centro de la Vía Láctea

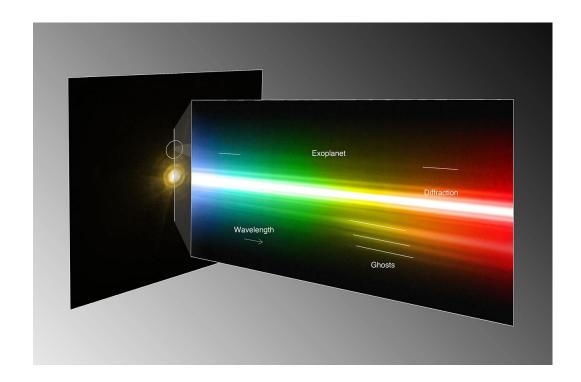
- Las observaciones:
 - Emisión IR variable con cuatro destellos importantes detectados por el VLT en Sagittarius A* durante un período de seis horas
 - Destellos en el submilimétrico detectados media hora más tarde que en el IR
- Conclusión: una burbuja de gas que orbita cerca del agujero negro es estirada por la gravedad y se expande, produciendo destellos a distintas longitudes de onda
- En contexto: destellos IR desde el agujero negro súper masivo de la Vía Láctea habían sido detectados por primera vez NACO / Yepun (UT4), VLT en 2003 (véase comunicado de prensa eso0330 http://www.eso.org/public/news/eso0330/)

 Las implicaciones: observaciones multi-longitud de onda proporcionarán datos cruciales para comprender la física del centro de nuestra galaxia

8. Análisis directo del espectro de exoplanetas y sus atmósferas

8. Análisis directo del espectro de exoplanetas y sus atmósferas

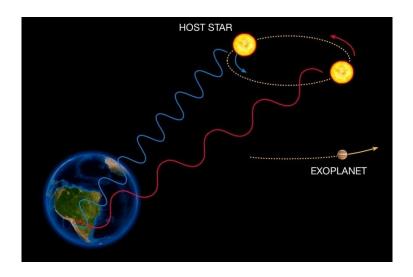
- Descubrimiento: la atmósfera alrededor de un exoplaneta tipo súper-Tierra es analizada por primera vez con el VLT
- Instrumentos / Telescopios:
 - FORS, NACO / Kueyen (UT2), Yepun (UT4), VLT
 - HARPS / Telescopio 3,6 m, La Silla
- Más información en los comunicados de prensa eso1047 y eso1002: http://www.eso.org/public/news/eso1047/
 http://www.eso.org/public/news/eso1002/
- Las observaciones:
 - El planeta GJ 1214b es confirmado por HARPS en 2009
 - Espectroscopía IR de la luz de la estrella GJ 1214 a través de la atmósfera del planeta durante los tránsitos, hecha con FORS in 2010
- Conclusiones:
 - GJ 1214b es una súper-Tierra, 6,5 veces más masivo que la Tierra y con un radio 2,6 veces más grande
 - La atmósfera de GJ 1214b es rica en vapor o cubierta por neblina



8. Análisis directo del espectro de exoplanetas y sus atmósferas


En contexto:

- El primer espectro directo de un exoplaneta alrededor de la estrella HR 8799 es detectado por NACO en 2010
- El exoplanta es un gigante gaseoso, con una masa 7-10 veces la de Júpiter


9. El más rico sistema planetario

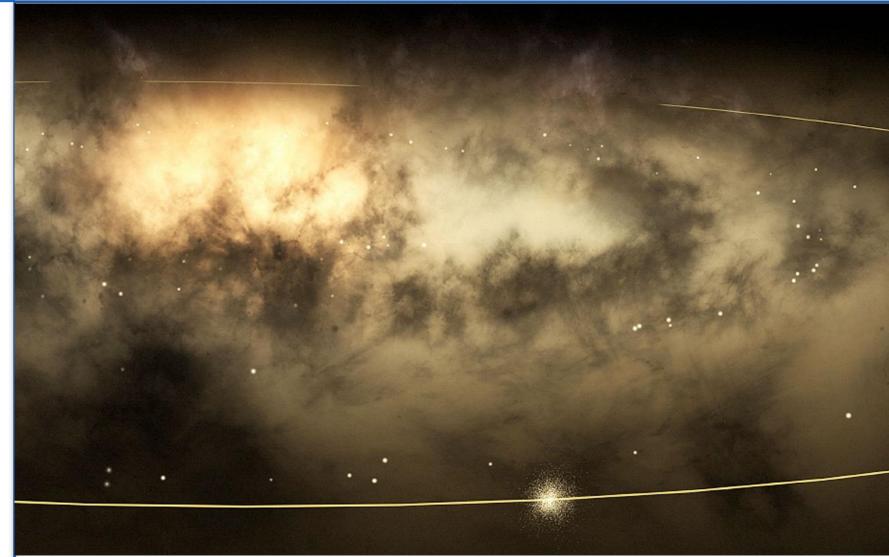
9. El más rico sistema planetario

- Descubrimiento: el sistema con más planetas jamás descubierto; parece contener también el planeta de masa más baja jamás encontrado
- Instrumentos / Telescopios: HARPS / Telescopio 3,6 m, La Silla
- Más información en comunicado de prensa eso1035: http://www.eso.org/public/news/eso1035/
- Las observaciones:
 - La estrella de tipo solar HD 10180 observada durante un período de 6 años
 - 190 mediciones individuales de HARPS

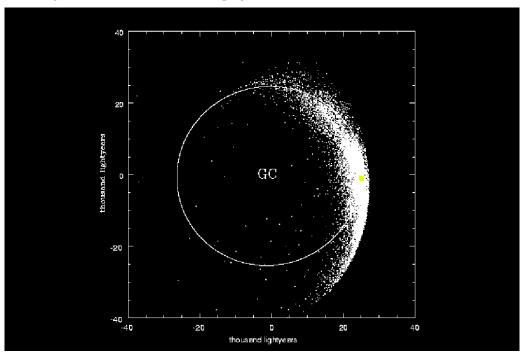
9. El más rico sistema planetario

Conclusiones:

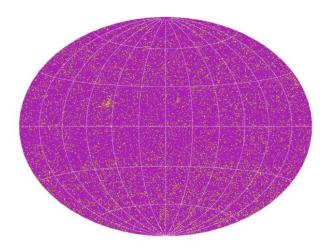
- El sistema planetario alrededor de la estrella HD 10180 está compuesto por:
 - 5 planetas tipo Neptuno, con masas entre 13 y 15 veces la de la Tierra y períodos orbitales de 6 a 600 días
 - 1 planeta tipo Saturno, con 65 masas terrestres, período orbital de 2200 días
 - El planeta menos masivo jamás descubierto, con 1,4 masas terrestres, período orbital de 1,18 días
- El sistema planetario alrededor de HD 10180 comparado con nuestro Sistema Solar:
 - Es más poblado, con planetas más masivos en su región interior
 - No posee gigantes gaseosos tipo Júpiter
 - Muestra un patrón regular en las distancias de los planetas de la estrella


En contexto:

- Sistemas planetarios masivos son encontrados alrededor de estrellas masivas y ricas en metales
- Los sistemas planetarios menos masivos son encontrados alrededor de estrellas de baja masa y pobres en metales


10. El movimiento de las estrellas en la Vía Láctea

10. El movimiento de las estrellas en la Vía Láctea


- Descubrimiento: estudio detallado de su dinámica demuestra la turbulenta vida de nuestra Vía Láctea
- Más de 1000 noches de observación durante 15 años
- Telescopios: Telescopio Danés 1,54 m, La Silla (y otros)
- Más información en comunicado de prensa eso0411: http://www.eso.org/public/news/eso0411/

10. El movimiento de las estrellas en la Vía Láctea

- Observaciones: movimientos de más de 14 000 estrellas vecinas
- Conclusiones:
 - La evolución de la Vía Láctea fue más caótica y compleja de lo que se pensaba
 - Explosiones de supernovas, colisiones galácticas, y la caída de grandes nubes de gas han hecho de la Vía Láctea un lugar muy movido
- Escenario anterior: modelos muy simplificados y "tranquilos"
- Impacto: la evolución de las galaxias es algo muy complejo donde donde intervienen muchos factores distintos

