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In this paper I describe a simple numerical procedure to compute synthetic horizon altitude profiles for any given site.
The method makes use of a simplified model of local Earth’s curvature, and it is based on the availability of digital
elevation models describing the topography of the area surrounding the site under study. Examples constructed using the
Shuttle Radar Topographic Mission (SRTM) data (with 90 m horizontal resolution) are illustrated, and compared to direct
theodolite measurements. The proposed method appears to be reliable and applicable in all cases when the distance to the
local horizon is larger than ∼10 km, yielding a rms accuracy of ∼0.1 degrees (both in azimuth and elevation). Higher
accuracies can be achieved with higher resolution digital elevation models, like those produced by many modern national
geodetic surveys.
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1 Introduction

When studying the orientation of buildings, tombs, or any
other man made structure, having an handy description of
the natural horizon is a fundamental step. In most of the
cases this is done directly measuring the horizon altitude at
the relevant azimuths using, for instance, a theodolite and
sun fixes. Depending on the angular sampling one wants to
achieve, this might turn into a rather long and boring pro-
cedure. An alternative possibility is the calibration of a few
points using direct theodolite readings coupled to digital,
rectified photography. However, this might turn to be diffi-
cult, or even impossible, in the case the natural horizon is
not visible because of modern constructions or vegetation.
In this paper I propose an alternative solution, which is

based on a simple geometrical model for Earth’s local shape
and the availability of a digital elevation model (DEM) for
the area under examination. The idea is rather simple. For a
given observer’s site, the line of sight (hereafter LOS) eleva-
tion profile (LOSEP) along the input azimuth is extracted.
Then, for each point along the LOS, the apparent altitude
above the local horizontal is estimated and the maximum
is found. By definition, this is the natural horizon altitude
as seen from the observing site. Repeating the same proce-
dure for all azimuths (with a given angular step) will finally
allow one to retrieve the horizon altitude profile. The angu-
lar resolution clearly depends on the horizontal sampling in
the DEM, while the accuracy is related to the DEM vertical
accuracy.
Since the available DEMs provide the elevation above

a given ellipsoid (typically the WGS84), the first thing one
needs to take into account is Earth’s curvature, which makes
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a far mountain appear lower than it would if the Earth’s sur-
face were flat. Then, although this is a second order effect,
one has to correct for the terrestrial refraction (which has
the opposite effect). These two corrections are discussed in
the next two sections.

2 Correcting for Earth’s curvature

Let us consider an observer placed in A at an elevation hA

(above the sea level), and a point B (elevation hB), located
at a distance d from A. If Earth were flat, the altitude α of
B seen from A would simply be

α = arctan

(
hB − hA

d

)
.

However, because of Earth’s curvature, far objects sub-
tend altitudes which are smaller than those given by the pre-
vious expression. Using a simplified model for Earth’s local
curvature, one can derive the following approximate expres-
sion (see Appendix A):

α ≈ arctan

[
hB − hA

d
− 1

2

d

R

]
, (1)

where R is the local radius of curvature (see Eq. A1). For
example, suppose that a hB = 3.0 km mountain peak is ob-
served from a site placed d = 100 km away, at an elevation
hA = 0.1 km. Using R = 6370 km one obtains α = 1.◦21.
Neglecting Earth’s curvature one would get α = 1.◦66, al-
most half a degree off. It can be easily shown that for ellip-
soidal distances d ≤ 300 km the error introduced by the ap-
proximated expression (1) is less than 0.01 degrees, which
is well below the typical archaeoastronomical needs.
In the cases where |hB − hA|/d� 1, using Eq. (1) one

can show that the apparent altitude decreases at a rate of
1/2R, which is about 16.′′2 km−1 (or 0.◦0045 km−1).

c© 2011 WILEY-VCH Verlag GmbH&Co.KGaA, Weinheim



744 F. Patat: Horizon synthesis for archaeo-astronomical purposes

3 Correcting for terrestrial refraction

As the light travels across Earth’s atmosphere it bends, in
such a way that a far object appears to be higher than actu-
ally is. This phenomenon is known as terrestrial refraction1.
If α is the unrefracted horizon altitude (corrected for

Earth’s curvature), then the apparent horizon altitude α′ is
simply given by α′ = α + RT. Several analytical descrip-
tions of RT have been proposed, but the one developed by
Bomsford (1980) appears to be the most accurate (see for
instance Sampson et al. 2003). In this formulation the ter-
restrial refraction is given by

RT = κd ,

where d is the distance between the observer an the natural
horizon (in km), and κ (degrees km−1) is defined as

κ =
1

R

0.252P

T 2

(
34.2 +

dT

dz

)
180

π
, (2)

where R is Earth’s radius (in km), P is the atmospheric
pressure (in millibars), T is the ground air temperature (in
K), and dT/dz is the ground atmospheric vertical temper-
ature gradient (in K km−1). For typical atmospheric condi-
tions (P = 1000mb, T = 293 K, dT/dz =−10 K km−1) one
finds that κ ∼2.3 arcsec km−1 (or 0.00064 degrees km−1).
This is about seven times smaller than the effect produced
by Earth’s curvature. In the case of the example discussed
in the previous section (d = 100 km) this would turn into a
correction of ∼0.06 degrees.
One can simplify the previous formula introducing the

refraction constantK:

K = 0.273

(
34.2 +

dT

dz

)
.

With this setting, κ (in degrees km−1) can be written as

κ = 0.00829 K
P

T 2
. (3)

Typical values of K range from ∼5 (during the day)
to ∼10 (at sunset/sunrise or night). The fluctuation of at-
mospheric conditions introduce a variation in κ, which can
range from∼1.5 to ∼4 arcsec km−1. For instance, on a dis-
tance of 100 km this translates into a peak-to-peak hori-
zon altitude change of ∼0.07 degrees. Therefore, even in
the hypothesis all other quantities are known with negligi-
ble errors, this sets the natural maximum accuracy one can
achieve on the horizon apparent altitude.

4 Digital elevation model

The proposedmethod is based on the availability of a DEM,
i.e. an array of values giving the elevation of a given point
above the underlying ellipsoid. If λ and φ are the longitude

1 As opposed to the so called astronomical refraction. The phenomenon
is very similar, but in that case the light rays have to cross the whole atmo-
sphere, which makes its description much more complex, especially when
one is to consider objects very close to the horizon.

and latitude of a point P on the ellipsoid, I will express its
elevation z as z = g(λ, φ) or, alternatively, as z = g(P ).
Because of its nature, a DEM is a discrete collection

of data points, obtained with some spatial resolution. Typi-
cally, the data are distributed on a regular grid, with a hori-
zontal sampling that I will indicate asΔl. This corresponds
to the minimum scale one can resolve in the DEM. Obvi-
ously, if one is to get the elevation of a point which does not
coincide with one of the grid nodes, then one will have to
use some interpolation method (nearest neighbor, linear in-
terpolation, bi-cubic spline interpolations, etc.). No matter
what method is used, though, the resolution is dictated by
the sampling. In the following I will assume that the DEM
is given with a regular sampling Δl, which is to say that
the data points have been obtained/re-gridded at a constant
step. Also, I will indicate with σz the rms uncertainty on
each DEM data point.
Each country has its own geographical survey program-

me, aiming at mapping its territory with a certain resolu-
tion. These data may or may not be available to the reader.
Therefore, in this article I will consider the Shuttle Radar
Topographic Mission, which has the advantage of having a
relatively good horizontal resolution, a good vertical accu-
racy, an almost world wide coverage, and, most importantly,
is freely available2.

4.1 The Shuttle Radar Topographic Mission

The Shuttle Radar Topographic Mission (SRTM) provides
an homogeneous coverage of Earth’s elevation (Farr et al.
2007). For the US territory it is distributed with a hori-
zontal resolution of 30 m (SRTM30), while for the rest of
the planet data were averaged within bins of 90×90 m2

(SRTM90), hence including 3×3 original data points each.
The 90%-level absolute vertical accuracy of the SRTM
original data is better than 9 m (Farr et al. 2007), which cor-
responds to an rms accuracy of 5.5 m. Therefore, the formal
rms error on the 90 m data is expected to be σz ∼ 1.8 m. I
note, however, that this is strictly true only if the terrain is
smooth on scales smaller than 30 m, otherwise the averag-
ing process within 90 m bins produces an artificial smooth-
ing, turning intomuch larger deviations from the real values.
Clearly this is going to affect very steep mountain regions,
where the elevation can change significantly on scales of
tens of meters. As a consequence, sharp mountain peaks ap-
pear in the SRTM90 data with lower than real elevations.
The altitude uncertainty σα (in degrees) implied by an

elevation uncertainty σz can be estimated through the fol-
lowing approximate expression:

σα ≈ 180
√

2

π

σz

d
,

where d is the distance between the observer and the point
being surveyed, expressed in the same units as σz . For
instance, the formal elevation error of the SRTM90 data
2 The data can be freely downloaded at the following URL:

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp

c© 2011 WILEY-VCH Verlag GmbH&Co.KGaA, Weinheim www.an-journal.org



Astron. Nachr. / AN (2011) 745

(1.8 m) translates into an altitude error of about 0.1 degrees
at d � 1.5 km.
As for the SRTM horizontal accuracy, this is better than

20 m (at the 90%-level; Farr et al. 2007). This corresponds
to an rms deviation σl = 14 m). Therefore, in the SRTM90
case, this is much better than the horizontal resolution Δl.
As a consequence, the rms error on the azimuth ϕ of a given
data point is approximately

σϕ ≈ 180

π

σl

d
� 0.8

dkm

.

At d = 10 km this corresponds to an uncertainty of∼0.1
degrees, which is a fifth of the apparent diameter of the sun
(and the Moon). Obviously, if the horizon is farther away,
the azimuth uncertainty becomes proportionally smaller. If
one is after higher azimuth accuracies, or the horizon in the
direction of interest is closer than 10 km, then a DEM with
better sampling is required.3

In this respect, I note that a preliminary version of the
data produced by the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER)4 was recently
released. Nominally they have an horizontal resolution of
30 m, which is a factor 3 better than the SRTM90. However,
a close look to the data shows that the effective horizontal
resolution is actually close to 90 m and the vertical accu-
racy is not as good as the one of SRTM, at least not in the
released version.

5 LOSEP extraction and horizon
determination

Having a DEM at hand, one can extract the LOSEP start-
ing from the observer’s position P0 along a given azimuth
ϕ as a function of distance d from the observer. This corre-
sponds to solving the forward geodesic problem, i.e. com-
puting the running end point P of a geodesic path on the
ellipsoid, given the start point P0, a path length d, and a
starting azimuth ϕ. As is standard in geodesy, this is done
numerically, using the iterative algorithm devised by Vin-
centy (1975). Although the solution is non-analytical, for
the sake of clarity I will indicate it as

P = f(P0, d, ϕ) .

Given the discrete nature of the DEM, the LOSEP is ex-
tracted at a number of points, which are separated by some
constant length. Obviously, the maximum resolution is at-
tained when this length is equal to the DEM resolutionΔl.
With these definitions, the LOSEP extraction is done

through the following steps:

1. elevation z0 = g(P0) is extracted from the DEM at
(λ0, φ0);

3 In many countries surveys with horizontal resolutions of 15 m or better
are either available or under construction. The reader should get in touch
with the local authorities to verify the public availability of higher resolu-
tion data.
4 See: http://asterweb.jpl.nasa.gov/index.asp

Fig. 1 (online colour at: www.an-journal.org) Example LOSEP
extraction for the Roman town Aquileia (λ = 13.◦367 E, φ =
45.◦767 N), with ϕ = 339◦. The underlying DEM is from the
SRTM90 data set, and is displayed in the Universal Transverse
Mercator projection (UTM, 33N). The white area in the lower part
of the map is the Adriatic Sea.

2. the path length for the i-th step along the LOS is updated
to di = Δl i;

3. the coordinates (λi, φi) of the running pointP are com-
puted as f(P0, di, ϕ);

4. the elevation of the running point is computed as zi =
g(λi, φi);

5. the apparent altitude αi of P as seen from P0 is calcu-
lated with Eq. (A4) and corrected for terrestrial refrac-
tion;

6. the cycle is repeated from step 2, until di reaches a max-
imum value dmax.
Once this is done, the horizon elevation along azimuth

ϕ is determined as α(ϕ) = max{αi}. I note that in most of
the cases it is sufficient to consider distances within dmax �
200 km. The exact value depends on the maximum elevation
in the area surrounding the site under study. From Eq. (1),
one has that the distance at which a mountain peak appears
at an altitude α = 0 is given by d ≈

√
2RΔz, where Δz

is the difference in elevation. For Δz ≤ 4.0 km (which is
true for most of the sites on the planet), it is d ≤ 225 km.
Incidentally, here emerges one of the advantages of hori-
zon synthesis over direct measurements. If the horizon is
far away (d > 50–100 km), it might be very difficult, if not
impossible, to have a sufficient atmospheric transparency to
be able to actually see it.
An example LOSEP extraction is presented in Fig. 1,

where I have chosen the Roman town Aquileia (Italy; fo-
unded in 181 BCE) as the observing site. For the sake of the
example I have traced the LOS along one of the two cardi-
nal directions of the town (ϕ � 339◦), in the NW direction.
The site is marked with a circle, while the selected line of
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Fig. 2 (online colour at: www.an-journal.org) Upper panel:
LOSEP along ϕ = 339◦ for the Roman town of Aquileia (see
Fig. 1). Lower panel: the corresponding altitude profile. The blue
arrow marks the maximum altitude, corresponding to the natural
horizon along the chosen direction.

sight is traced by a solid line. The underlying DEM (from
the SRTM90 data set) has been projected to the Universal
Transverse Mercator system (see Hager, Behensky & Drew
1989).
The LOSEP extracted along this direction is shown in

Fig. 2 (upper panel), and it reaches about 3000 m in the
Austrian Alps, at a distance of 140 km fromAquileia. How-
ever, the horizon is located at about 100 km, at an elevation
of ∼2600 m, and it subtends an apparent altitude of ∼1.◦1
(Fig. 2, lower panel).
Clearly the whole process can be repeated for ϕ ranging

from 0◦ to 360◦ with a given stepΔϕ. This will finally give
the full horizon profile α(ϕ).

6 Validation

The simplest way of validating the procedure outlined in the
previous section is a comparison between the synthetic pro-
file and direct horizon measurements. The natural horizon
altitude can be determined using a theodolite and sun fixes,
taking measurements with some azimuth step. The typical
accuracy one can achieve with this method is of the order of
a tenth of a degree or better, depending on the quality of the
instrument used.5

In the course of studying the orientation of the ancient
church of St. Martin (Artegna, Italy; 13.◦1528 E, 46.◦2415
N, 267 m a.s.l.), I had measured the natural horizon alti-
tude in a range around E and W directions. The building

5 It must be noticed that when the horizon is close, trees can substan-
tially affect direct measurements, producing systematically higher theodo-
lite readings.

is located on top of St. Martin Hill, about 50 m above the
surrounding plain. The E horizon is dominated by the pres-
ence of Mt. Faet (750 m a.s.l.), whose top is located at less
than 2 km from St. Martin. Seen from the site, the top sub-
tends an angle of about 14 degrees. On the contrary, the W
horizon is located at more than 10 km, and has an altitude
around 3 degrees. The different distances to the E and W
horizon locations from the observing site make this an ideal
test case. The comparison between the theodolite readings
and the synthetic profile is presented in Fig. 3.
In the case of the W horizon, the deviations are always

smaller than 0.2 degrees, and in most of the cases they are
less than 0.1 degrees, i.e. well within the expected rms er-
rors. In general, the SRTM DEM gives a better result than
the ASTER one (Fig. 3, left panels). Things are different
for the E horizon, for which the match is good only along
the smooth declining ridge of Mt. Faet in the azimuth range
68◦–78◦, where the horizon is at a distance of about 1.9 km
(Fig. 3, right panels). Between 64◦ and 68◦, where the dis-
tance drops to about 1.2 km, the deviations exceed 0.◦5. But
the largest discrepancies are seen for azimuths larger than
84◦, where they are larger than 1.◦5. This very clearly illus-
trates the effect of a close horizon coupled to a steep slope,
where the smoothing intrinsic to the DEM data produces
systematically lower elevations and, in turn, altitudes.
These two examples demonstrate that the procedure de-

scribed here, when used in conjunction to SRTM90 or AS-
TER DEMs, gives results accurate to ∼0.1 degrees only
for horizon distances larger than ∼10 km. This does not
exclude that acceptable results may be achieved also for
shorter distances, but this will depend on the horizon mor-
phology, and cannot be assumed a priori.

7 Example application: the case of Maes
Howe

The method described in this paper can be applied any time
there is the need of having a handy description of the nat-
ural horizon in an archaeo-astronomical analysis. To show
the potential of the technique, I close this article with an
application to a famous and well studied case, where the
horizon shape is playing a fundamental role: Maes Howe.
Maes Howe is a neolithic site located onMainland, Ork-

ney, Scotland (3.◦1879 W, 58.◦9981 N, 20 m a.s.l.). Besides
being the site of a chambered cairn and passage grave,Maes
Howe offers a spectacular event. Around twenty days before
(and after) the winter solstice, the sun sets below the horizon
defined by Ward Hill, placed at about 14 km SW of Maes
Howe. However, after 7–8 minutes, it reappears for a couple
of minutes, just before definitely setting (Reijs 1998, 2001;
see also Magli 2009, his Figs. 3 and 4). This is due to a com-
bination of the sun apparent path and the morphology of the
horizon.
This phenomenon is verywell reproduced using the syn-

thetic horizon computed for Maes Howe, once one applies
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Fig. 3 (online colour at: www.an-journal.org) Comparison between the theodolite readings (empty circles) and the synthetic profiles
(W to the left and E to the right) computed using SRTM (red) and ASTER (blue) DEMs for the site of St. Martin (Artegna, Italy). Top
panel: horizon distance; middle panel: horizon profiles; bottom panel: Δα residuals (computed−measured). The errorbars indicate the
5σ error of the synthetic profile.

Fig. 4 (online colour at: www.an-journal.org) Lower panel: ho-
rizon location for Maes Howe. The map is a contour plot of the
SRTM DEM. The position of Ward Hill is marked by a blue
circle. Upper panel: apparent path of the Sun on December 1
(δ� = −21.◦9; solid red line). The dashed line traces the real path
of the Sun (see text). The red circles mark the position of the Sun
(to scale) with a time interval of 2 minutes. The blue curve is the
SRTM synthetic horizon as seen from Maes Howe.

a standard astronomical refraction correction to the posi-
tion of the sun.6 This is illustrated in Fig. 4, where I have
traced the apparent trajectory of the Sun over the horizon.
The Sun reappears for a couple of minutes at an azimuth
around 223◦, in full agreement with direct measurements
(Reijs 1998), when the sun declination is δ� = −21.◦9 (cor-
responding to December 1 of today’s calendar). An accu-
rate reproduction is obtained also for the sun reappearance
in the direction of Kame of Hoy, which takes place for δ� =
−17.◦3 (February 1), at an azimuth of about 235.◦5. Since in
2700 BCE (the supposed date for the construction of Maes
Howe) the obliquity was about 23.◦8, things were not very
much different, and the same phenomenon took place about
22 days before and after winter solstice. Having the syn-
thetic horizon, one can now ask what would be the azimuth
of the setting Sun on the solstice. This turns out to be 216.◦8
(disk center), and the horizon altitude is 1.◦3, but in this case
no reappearance is possible. As minimum andmaximum az-
imuths for which the Sun can shine on the back of the cham-
ber are approximately 217◦ and 223◦ (Reijs 1998), both the
solstice setting and the sun reappearance should be observ-
able from within the chamber itself.
The procedure outlined in this paper could be used,

for instance, to test whether the reappearing Sun is visible
from other sites of archaeological relevance close to Maes
Howe. As an example I analyze the case of the Ring of
Brodgar7 (3.◦2280W, 59.◦0014 N). This stone circle, located

6 This correction is valid only on average, as the exact refraction de-
pends on the physical conditions along the line of sight, and it is highly
variable. See for instance Sampson et al. (2003).
7 See http://www.orkneyjar.com/history/brodgar/
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Fig. 5 (online colour at: www.an-journal.org) Synthetic horizon
computed for the Ring of Brodgar and apparent Sun path for δ� =
−21.◦7 (top), −23.◦5 (middle), and −20.◦1 (bottom).

between the Lochs of Stenness and Harray, has a diame-
ter of about 104m, and is the third largest in the British
Isles (Ruggles 1999). As the calculations show, around±20
days from winter solstice the Sun sets over the Kame of
Hoy, about 10◦ S of Ward Hill, without re-emerging from
behind it (Fig. 5, top panel). At present day’s winter sol-
stice, the Sun still sets behind the Kame of Hoy, without
re-appearing (Fig. 5, middle panel). Even for the increased
obliquity expected for 2700 BCE the apparent Sun path does
intersect the profile of Ward Hill. On the contrary, the re-
appearance of the Sun is in principle observable from the
Ring of Brodgar when δ� = −20.◦1 (November 22/January
21), that is about one month before and after winter solstice
(Fig. 5, bottom panel).

8 Conclusions

The procedure I have outlined in this paper allows one to
easily compute a synthetic horizon profile for any site. The
accuracy in the final product depends on the resolution of
the DEM and its vertical accuracy. Rms deviations of∼0◦.1
degrees are achievable with the SRTM90 data when the ho-
rizon is at distances of the order of 10 km. For shorter dis-
tances, the deviations are expected to be larger, especially if
the horizon is defined by steep mountain profiles. In those
cases the morphology of the area surrounding the site of in-
terest needs to be examined more closely, and the synthetic
horizon validated with direct theodolite measurements ob-
tained along some critical directions.
The method can be applied during the exploratory phase

of an archaeoastronomical site’s study, either to plan direct
on-site surveys or to test working hypotheses. When accu-

racies of a few tenths of a degree are sufficient (as is cer-
tainly the case for solar alignments), the results provided by
the method can be used directly for the orientation analysis,
saving a significant amount of time during the field work.
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A Derivation of Earth’s curvature
correction

In the following I will assume Earth can be described by an ellip-
soid with semi-axis a and b. However, for the sake of simplicity,
I will also assume that locally it can be approximated by a sphere
having the curvature radius of the ellipsoid at the site under exam-
ination. If φ is the site geodetic latitude, this is given by

R(φ) =
ab√

a2 sin2 φ + b2 cos2 φ
. (A1)

Throughout this paper I adopt the WGS84 ellipsoid, which has
a = 6378.1 km and flattening f = 1.0/298.25722356 (b = 6356.8
km). If we now imagine to have an observer placed in A, at eleva-
tion hA above the ellipsoid, looking at a site B placed at elevation
hB and with an angular separation on the ellipsoid defined as θ
(see Fig. A1), the altitude α of B as seen from A above the local
horizontal plane is given by

α = arctan

(
h′′

d′′

)
, (A2)

where d′′ and h′′ are defined as in Fig. A1. While d′′ is the distance
between A andB projected on the local horizontal plane, h′′ is the
elevation of B above the same plane. The whole problem reduces
to determining these two lengths.

Looking at Fig. A1 we immediately note that

d′′ = (R + hB) sin θ .

If we defineΔh = HH ′ (see Fig. A1), then we have

h′′ = hB cos θ − hA − Δh .
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SinceΔh = R(1 − cos θ), we finally obtain

h′′ = hB cos θ − hA − R (1 − cos θ) .

Therefore, the elevation of B as seen from A is given by the fol-
lowing expression:

α = arctan

[
hB cos θ − hA − R(1 − cos θ)

(R + hB) sin θ

]
. (A3)

This formula can be approximated considering that in the prac-
tical applications θ is going to be at most a few degrees. In fact,
if we consider two points separated by an ellipsoidal distance d =
300 km, the angular separation is θ ≈ d/R = 2.◦7. In these circum-
stances, one can use the following approximate expressions for
the two trigonometric functions: cos θ ≈ 1 −

1

2
θ2 and sin θ ≈ θ

(where θ is expressed in radians).
After substituting them in Eq. (A3), and considering that in

all practical cases hB/R � 1, we finally arrive at the following
expression:

α ≈ arctan
[

hB − hA

d
−

1

2

d

R

]
, (A4)

which can be readily used to derive the curvature-corrected alti-
tude. Fig. A1 (online colour at: www.an-journal.org) Geometry of the

problem.
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