Messenger No. 181 (Quarter 3 | 2020)

« Back to The Messenger home

Instrumentation

3-6 (PDF)
Leibundgut, B., Anderson, R. et al.
ESPRESSO Science Verification

DOI:
10.18727/0722-6691/5204
ADS BibCode:
2020Msngr.181....3L
Section:
Instrumentation
Author(s)/Affiliation(s):
Leibundgut, B.; Anderson, R.; Berg, T.; Cristiani, S.; Figueira, P.; Lo Curto, G.; Mehner, A.; Sedaghati, E.; Pritchard, J.; Wittkowski, M.
AA(ESO) AB(ESO) AC(ESO) AD(INAF Trieste, Italy) AE(ESO) AF(ESO) AG(ESO) AH(ESO) AI(ESO) AJ(ESO)
Abstract:
ESPRESSO Science Verification took place at the end of August and the beginning of September 2019. It was spread over two visitor-mode nights, requiring seven hours of observations taken in service mode. The weather conditions (strong winds and poor seeing conditions) and some telescope problems (failure of guide cameras) hampered the first two nights and additional time was granted to finish the top-ranked programmes. In response to the call for ESPRESSO science verification, 16 proposals were submitted, 10 of which were scheduled for a total of 25 hours of observations. A slight oversubscription of the available time was planned to allow for the prevailing atmospheric conditions. The seven top-ranked programmes were fully completed.
References:
Allan, A. et al. 2020, accepted by MNRAS, 496, 1902; Cooke, R. et al. 2020, MNRAS, 494, 4884; Cupani, G. et al. 2019, Astronomical Data Analysis Software and Systems, XXVI, 362; Hamann, F. et al. 2011, MNRAS, 410, 1957; Rivera-Thorsen, T. E. et al. 2019, Science, 366, 738; Sbordone, L. et al. 2014, A&A, 564, 109; Sosnowska, D. et al. 2015, Astronomical Data Analysis Software and Systems, XXIV, 285; Vanzella, E. et al. 2020a, MNRAS, 491, 1093; Vanzella, E. et al. 2020b, arXiv:2004.08400; Welsh, L. et al. 2020, MNRAS, 494, 1411
7-15 (PDF)
Lundgren, A., De Breuck, C. et al.
An Era Comes to an End: The Legacy of LABOCA at APEX

DOI:
10.18727/0722-6691/5205
ADS BibCode:
2020Msngr.181....7L
Section:
Instrumentation
Author(s)/Affiliation(s):
Lundgren, A.; De Breuck, C.; Siringo, G.; Weiß, A.; Agurto, C.; Azagra, F.; Belloche, A.; Dumke, M.; Durán, C.; Eckart, A.; González, E.; Güsten, R.; Hacar, A.; Kovács, A.; Kreysa, E.; Mac-Auliffe, F.; Martínez, M.; Menten, K.M.; Montenegro, F.; Nyman, L.-Å.; Parra, R.; Pérez-Beaupuits, J.P.; Reveret, V.; Risacher, C.; Schuller, F.; Stanke, T.; Torstensson, K.; Venegas, P.; Wiesemeyer, H.; Wyrowski, F.
AA(ESO) AB(ESO) AC(ESO) AD(Max-Planck-Institut für Radioastronomie, Bonn, Germany) AE(ESO) AF(ESO) AG(Max-Planck-Institut für Radioastronomie, Bonn, Germany) AH(ESO) AI(ESO) AJ(Max-Planck-Institut für Radioastronomie, Bonn, Germany) AK(ESO) AL(Max-Planck-Institut für Radioastronomie, Bonn, Germany) AM(Leiden Observatory, Leiden, The Netherlands) AN(Smithsonian Astrophysical Observatory, Cambridge, United States) AO(Max-Planck-Institut für Radioastronomie, Bonn, Germany) AP(ESO) AQ(ESO) AR(Max-Planck-Institut für Radioastronomie, Bonn, Germany) AS(ESO) AT(ESO) AU(ESO) AV(ESO) AW(IRFU, CEA, Université Paris-Saclay, Gif-Sur-Yvette, France; AIM, CEA, CNRS, Université de Paris, Gif-Sur-Yvette, France) AX(IRAM, Saint Martin d’Hères, France) AY(AIP, Potsdam, Germany) AZ(ESO) BA(ESO) BB(ESO) BC(Max-Planck-Institut für Radioastronomie, Bonn, Germany) BD(Max-Planck-Institut für Radioastronomie, Bonn, Germany)
Abstract:
It was 13 years ago, in May 2007, when the Large APEX Bolometer Camera (LABOCA) was commissioned as a facility instrument on the APEX telescope at the 5100-m-high Llano de Chajnantor. This 870-µm bolometer camera, in combination with the high efficiency of APEX and the excellent atmospheric transmission at the site, has offered an unprecedented capability in mapping the submillimetre continuum emission in objects ranging from the Solar System and star-forming regions throughout the Galactic plane, to the most distant galaxies. As the operation of LABOCA is soon coming to an end to make space for a new array of continuum detectors, we present an overview of the challenges, lessons learned and science impact that it has generated. To date, LABOCA has produced the most papers of any APEX instrument and compares favourably with many VLT instruments.
References:
Beckwith, S. V. W. et al. 1990, AJ, 99, 924; Belloche, A. et al. 2011a, A&A, 527, A145; Belloche, A. et al. 2011b, A&A, 535, A2; Csengeri, T. et al. 2016, A&A, 585, 104; Csengeri, T. et al. 2017, A&A, 600, 10; The CONCERTO collaboration et al. 2020, accepted by A&A, arXiv:2007.14246; Dharmawardena, T. E. et al. 2020, ApJL, 897, L9 de Ugarte Postigo, A. et al. 2012, A&A, 538, A44; Eckart, A. et al. 2012, A&A, 537, A52; Elias, J. H. et al. 1978, ApJ, 220, 25; Emerson, D. T., Klein, U. & Haslam, C. G. T. 1979, A&A, 76, 92; Fischer, W. J. et al. 2017, ApJ, 840, 69; Foster, J. et al. 2011, ApJS, 197, 25; Fuhrmann, L. et al. 2014, MNRAS, 441, 1899; Furlan, E. et al. 2016, ApJS, 224, 5; Güsten, R. et al. 2006, A&A, 454, 13; Hacar, A. et al. 2013, A&A, 554, A55; Hildebrand, R. H. et al. 1977, ApJ, 216, 698; Hill, R. et al. 2020, MNRAS, 495, 3124; Hodge, J. et al. 2013, AAS, 221, 221.06; Holland, W. S. et al. 1999, MNRAS, 303, 659; Holland, W. S. et al. 2013, MNRAS, 430, 2513; Hughes, D. H. et al. 1998, Nature, 394, 241; Ivison, R. J. et al. 2020, MNRAS, 496, 4358; Jethava, N. et al. 2008, SPIE, 7020, 70200H Karim, A. et al. 2013, MNRAS, 432, 2; Kovács, A. 2008, SPIE, 7020, 70201S Kraft, R. P. et al. 2000, ApJL, 531, L9; Kreysa, E. 1985, International Symposium on Millimeter and Submillimeter Wave Radio Astronomy, 153; Kreysa, E. et al. 1999, Infrared Physics & Technology, 40, 191; Krugel, E. et al. 1990, A&A, 240, 232; Lewis, A. et al. 2018, ApJ, 862, 96; Miller, T. B. et al. 2018, Nature, 556, 469; Motte, F., Andre, P. & Neri, R. 1998, A&A, 336, 150; Otarola, A. et al. 2019, PASP, 131, 045001; Oteo, I. et al. 2018, ApJ, 856, 72; Palaio, N. P. et al. 1983, International Journal of Infrared and Millimeter Waves, 4, 933; Schuller, F. et al. 2009, A&A, 504, 415; Schuller, F. 2012, SPIE, 8452, 84521T Siringo, G. et al. 2009, A&A, 497, 945; Siringo, G. et al. 2010, The Messenger, 139, 20; Siringo, G. et al. 2012, SPIE, 8452, 845206; Smail, I. et al. 1997, ApJ, 490, 5; Smail, I., Walter, F. & LESS Consortium 2009, The Messenger, 138, 26; Strandet, M. L. et al. 2017, ApJL, 842, L15; Stutz, A. M. et al. 2013, ApJ, 767, 36; Subroweit, M. et al. 2017, A&A, 601, A80; Swinbank, A. M. et al. 2010, Nature, 464, 733; Swinbank, M. et al. 2012, The Messenger, 149, 40; Talvard, M. et al. 2018, SPIE, 10708, 1070838; Urquhart, J. S. et al. 2018, MNRAS, 473, 1059; Weiß, A. et al. 2008, A&A, 490, 77; Weiß, A. et al. 2009, ApJ, 707, 1201Notes a Ideally, one would use pairs or triples of bolometers to spend even more time on source, but moving away from the optical axis introduced too many uncertainties. b The reasons for the discrepancy are that some projects were not (yet) observed, and in some cases the data are associated with another project code (i.e., when a proposal is resubmitted to different periods and/or when a proposal is submitted to more than one partner).
16-20 (PDF)
Petry, D., Stanke, T. et al.
ALMA Data Quality Assurance and the Products it Delivers – The Contribution of the European ARC

DOI:
10.18727/0722-6691/5206
ADS BibCode:
2020Msngr.181...16P
Section:
Instrumentation
Author(s)/Affiliation(s):
Petry, D.; Stanke, T.; Biggs, A.; Díaz Trigo, M.; Guglielmetti, F.; Hatziminaoglou, E.; van Kampen, E.; Maud, L.; Miotello, A.; Popping, G.; Randall, S.; Stoehr, F.; Zwaan, M.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(ESO) AH(ESO) AI(ESO) AJ(ESO) AK(ESO) AL(ESO) AM(ESO)
Abstract:
From its inception, the Atacama Large Millimeter/submillimeter Array (ALMA) was intended to be accessible to all astronomers, including those who are more used to carrying out their research at other wavelengths. Since the beginning of science observations in September 2011, ALMA has therefore applied a comprehensive Quality Assurance (QA) process to the observed data before delivering them to the principal investigators (PIs). This huge investment, unique for a ground-based (non-survey) observatory of this calibre, results in fully calibrated datasets as well as high-quality images that allow the PIs to assess the quality of their data upon delivery and that provide an advanced starting point for the scientific analysis. In this article we provide a summary of the purpose and status of ALMA QA, a brief description of the QA process and the resulting ALMA data products, and a discussion of how the ALMA user profits from them.
References:
ALMA pipeline Team 2019, ALMA Science pipeline User’s Guide, Doc. 7.13, ver. 1; Hatziminaoglou, E. et al. 2015, The Messenger, 162, 24; Emonts, B. et al. 2019, ADASS XXIX, ASP Conf. Ser., in prep., arXiv:1912.09437; McMullin, J. P. et al. 2007, in Proc. ADASS XVI, ASP Conf. Ser., 376, 127; Petry, D. 2012, in proc. ADASS XXI, ASP Conf. Ser., 461, 849; Petry, D. et al. 2014, Proc. SPIE, 9152, 91520J Petry, D. et al. 2018, ALMA QA2; Data Products for Cycle 5, ALMA doc 5.12, ver. 2.0; Remijan, A. et al. 2019, ALMA Cycle 7; Technical Handbook, ALMA doc 7.3, ver 1.1

Astronomical Science

22-27 (PDF)
Evans, C., Lennon, D. et al.
The VLT-FLAMES Tarantula Survey

DOI:
10.18727/0722-6691/5207
ADS BibCode:
2020Msngr.181...22E
Section:
Astronomical Science
Author(s)/Affiliation(s):
Evans, C.; Lennon, D.; Langer, N.; Almeida, L.; Bartlett, E.; Bastian, N.; Bestenlehner, J.; Britavskiy, N.; Castro, N.; Clark, S.; Crowther, P.; de Koter, A.; de Mink, S.; Dufton, P.; Fossati, L.; Garcia, M.; Gieles, M.; Gräfener, G.; Grin, N.; Hénault-Brunet, V.; Herrero, A.; Howarth, I.; Izzard, R.; Kalari, V.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Patrick, L.; Puls, J.; Ramírez-Agudelo, O.; Renzo, M.; Sabín-Sanjulián, C.; Sana, H.; Schneider, F.; Schootemeijer, A.; Simón-Díaz, S.; Smartt, S.; Taylor, W.; Tramper, F.; van Loon, J.; Villaseñor, J.; Vink, J.S.; Walborn, N.
AA(UK Astronomy Technology Centre, Edinburgh, UK) AB(Instituto de Astrofísica de Canarias, Tenerife, Spain) AC(Argelander-Institut für Astronomie, Universität Bonn, Germany; Max-Planck-Institut für Radioastronomie, Bonn, Germany) AD(Universidade do Estado do Rio Grande do Norte, Brazil) AE(UK Astronomy Technology Centre, Edinburgh, UK) AF(Liverpool John Moores University, UK) AG(University of Sheffield, UK) AH(Instituto de Astrofísica de Canarias, Tenerife, Spain) AI(AIP, Potsdam, Germany) AJ(The Open University, Milton Keynes, UK) AK(University of Sheffield, UK) AL(University of Amsterdam, The Netherlands; KU Leuven, Belgium) AM(CfA, Harvard-Smithsonian, Cambridge, MA, USA) AN(Queen’s University Belfast, Northern Ireland) AO(IWF, Austrian Academy of Sciences, Graz, Austria) AP(CAB, CSIC-INTA, Madrid, Spain) AQ(ICCUB-IEEC, Universitat de Barcelona, Spain; ICREA, Barcelona, Spain) AR(Argelander-Institut für Astronomie, Universität Bonn, Germany) AS(Argelander-Institut für Astronomie, Universität Bonn, Germany) AT(Saint Mary’s University, Halifax, NS, Canada) AU(Instituto de Astrofísica de Canarias, Tenerife, Spain; Universidad de La Laguna, Tenerife, Spain) AV(University College London, UK) AW(University of Surrey, UK) AX(Gemini Observatory, La Serena, Chile; Universidad de Chile, Santiago, Chile) AY(CAB, CSIC-INTA, Madrid, Spain) AZ(National Astronomical Observatory, Smolyan, Bulgaria) BA(CAB, CSIC-INTA, Madrid, Spain) BB(Universidad de Alicante, Spain) BC(USM, Munich, Germany) BD(German Aerospace Center (DLR), IPTI, Sankt Augustin, Germany) BE(CCA, Flatiron Institute, New York, USA) BF(Universidad de La Serena, Chile) BG(KU Leuven, Belgium) BH(Centre for Astronomy, University of Heidelberg, Germany; Heidelberg Institute for Theoretical Studies, Germany) BI(Argelander-Institut für Astronomie, Universität Bonn, Germany) BJ(Instituto de Astrofísica de Canarias, Tenerife, Spain; Universidad de La Laguna, Tenerife, Spain) BK(Queen’s University Belfast, Northern Ireland) BL(UK Astronomy Technology Centre, Edinburgh, UK) BM(National Observatory of Athens, Greece) BN(Keele University, UK) BO(IfA, University of Edinburgh, UK) BP(Armagh Observatory and Planetarium, Northern Ireland) BQ(Deceased, included with kind permission of Laura Etchemaite-Walborn)
Abstract:
The VLT-FLAMES Tarantula Survey (VFTS) was an ESO Large Programme that has provided a rich, legacy dataset for studies of both resolved and integrated populations of massive stars. Initiated in 2008 (ESO Period 82), we used the Fibre Large Array Multi Element Spectrograph (FLAMES) to observe more than 800 massive stars in the dramatic 30 Doradus star-forming region in the Large Magellanic Cloud. At the start of the survey the importance of multiplicity among high-mass stars was becoming evident, so a key feature was multi-epoch spectroscopy to detect radial-velocity shifts arising from binary motion. Here we summarise some of the highlights from the survey and look ahead to the future of the field.
References:
Abbott, B. P. et al. 2016, PhRvL, 116, 1102; Crowther, P. A. 2019, Galaxies, 7, 88; Evans, C. et al. 2008, The Messenger, 131, 25; Evans, C. et al. 2011, The Messenger, 143, 33; Howarth, I. D. et al. 1997, MNRAS, 284, 265; Langer, N. et al. 2020, A&A, 638, A39; Lennon, D. J. et al. 2018, A&A, 619, A78; Sana, H. et al. 2012, Science, 337, 444; Schneider, F. R. N. et al. 2018, Science, 359, 69; Simón-Díaz, S. & Herrero, A. 2014, A&A, 562, A135
28-32 (PDF)
Bayliss, D., Wheatley, P. et al.
NGTS — Uncovering New Worlds with Ultra-Precise Photometry

DOI:
10.18727/0722-6691/5208
ADS BibCode:
2020Msngr.181...28B
Section:
Astronomical Science
Author(s)/Affiliation(s):
Bayliss, D.; Wheatley, P.; West, R.; Pollacco, D.; Anderson, D.R.; Armstrong, D.; Bryant, E.; Cegla, H.; Cooke, B.; Gänsicke, B.; Gill, S.; Jackman, J.; Loudon, T.; McCormac, J.; Acton, J.; Burleigh, M.R.; Casewell, S.; Goad, M.; Henderson, B.; Hogan, A.; Raynard, L.; Tilbrook, R.H.; Briegal, J.; Gillen, E.; Queloz, D.; Smith, G.; Eigmüller, P.; Smith, A.M.S.; Watson, C.; Bouchy, F.; Lendl, M.; Nielsen, L.D.; Udry, S.; Jenkins, J.; Vines, J.; Jordán, A.; Moyano, M.; Günther, M.N.
AA(Department of Physics, University of Warwick, UK) AB(Department of Physics, University of Warwick, UK) AC(Department of Physics, University of Warwick, UK) AD(Department of Physics, University of Warwick, UK) AE(Department of Physics, University of Warwick, UK) AF(Department of Physics, University of Warwick, UK) AG(Department of Physics, University of Warwick, UK) AH(Department of Physics, University of Warwick, UK) AI(Department of Physics, University of Warwick, UK) AJ(Department of Physics, University of Warwick, UK) AK(Department of Physics, University of Warwick, UK) AL(Department of Physics, University of Warwick, UK) AM(Department of Physics, University of Warwick, UK) AN(Department of Physics, University of Warwick, UK) AO(Department of Physics and Astronomy, University of Leicester, UK) AP(Department of Physics and Astronomy, University of Leicester, UK) AQ(Department of Physics and Astronomy, University of Leicester, UK) AR(Department of Physics and Astronomy, University of Leicester, UK) AS(Department of Physics and Astronomy, University of Leicester, UK) AT(Department of Physics and Astronomy, University of Leicester, UK) AU(Department of Physics and Astronomy, University of Leicester, UK) AV(Department of Physics and Astronomy, University of Leicester, UK) AW(Institute of Astronomy, University of Cambridge, UK) AX(Institute of Astronomy, University of Cambridge, UK) AY(Institute of Astronomy, University of Cambridge, UK) AZ(Institute of Astronomy, University of Cambridge, UK) BA(Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt, Berlin, Germany) BB(Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt, Berlin, Germany) BC(Astrophysics Research Centre, Queen’s University Belfast, UK) BD(Observatoire astronomique de l’Université de Genève, Sauverny, Switzerland) BE(Observatoire astronomique de l’Université de Genève, Sauverny, Switzerland) BF(Observatoire astronomique de l’Université de Genève, Sauverny, Switzerland) BG(Observatoire astronomique de l’Université de Genève, Sauverny, Switzerland) BH(Departamento de Astronomía, Universidad de Chile, Santiago, Chile) BI(Departamento de Astronomía, Universidad de Chile, Santiago, Chile) BJ(Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile) BK(Instituto de Astronomía, Universidad Católica del Norte, Antofagasta, Chile) BL(Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, USA)
Abstract:
The Next Generation Transit Survey (NGTS) is a state-of-the-art photometric facility located at ESO’s Paranal Observatory. NGTS is able to reach a precision of 150 ppm in 30 minutes, making it the most precise ground-based photometric system in the world. This precision has led to the discovery of a rare exoplanet in the “Neptune Desert” (NGTS-4b), the shortest-period hot Jupiter ever discovered (NGTS-10b), and the first exoplanet recovered from a TESS monotransit candidate (NGTS-11b). It has also allowed NGTS to characterise exoplanet candidates transiting very bright stars (V < 10) from the TESS mission, and to make coordinated observations in support of VLT programmes.
References:
Acton, J. et al. 2020, MNRAS, 494, 3950; Armstrong, D. et al. 2020, Nature, 583, 39; Borucki, W. et al. 2010, Science, 327, 977; Bryant, E. et al. 2020, MNRAS, 494, 5872 Casewell, S. et al. 2018, MNRAS, 481, 1897; Cooke, B. et al. 2018, A&A, 619, 11; Gill, S. et al. 2020a, MNRAS, 491, 1548; Gill, S. et al. 2020b, MNRAS, 495, 2713; Gill, S. et al. 2020c, accepted by ApJ, arXiv:2005. 00006; Gillen, E. et al. 2020, MNRAS, 492, 1008; Hellier, C. et al. 2019, MNRAS, 488, 3067 Jackman, J. et al. 2019, MNRAS, 485, L136; Lendl, M. et al. 2020, MNRAS, 492, 1761; Mayor, M. & Queloz, D. 1995, Nature, 378, 355; Mazeh, T., Holczer, T. & Faigler, S. 2016, A&A, 589, 75; McCormac, J. et al. 2020, MNRAS, 493, 126; Ricker, G. et al. 2015, JATIS, Volume 1, id. 014003; Smith, A. et al. 2020, AN, 341, 273; West, R. et al. 2019, MNRAS, 48, 5094; West, R. et al. 2016, The Messenger, 165, 10; Wheatley, P. et al. 2018, MNRAS, 475, 4476

Astronomical News

34-36 (PDF)
Beccari, G., Boffin, H.M.J.
The ESO Cosmic Duologues

DOI:
10.18727/0722-6691/5209
ADS BibCode:
2020Msngr.181...34B
Section:
Astronomical News
Author(s)/Affiliation(s):
Beccari, G.; Boffin, H.M.J.
AA(ESO) AB(ESO)
Abstract:
On 26 April 1920, Harlow Shapley and Heber Curtis engaged in a debate on the scale of the Universe which became known as the Great Debate. That event continues to be seen as an exemplary way of addressing controversies, particularly in astronomy. While, after 100 years, many (if not all) of the scientific questions raised during the Great Debate have been answered, it is a common feature of research that as one question is answered new and often unexpected questions show up. Inspired by these considerations, ESO decided to commemorate the Great Debate with a series of events called the ESO Cosmic Duologues.
References:
Curtis, H. 1921, Bull. Nat. Res. Coun., 2, 194; Galilei, G. 1632, Dialogue Concerning the Two Chief World Systems, (Fiorenza: Per Gio: Batista Landini) Shapley, H. 1921, Bull. Nat. Res. Coun., 2, 171
37-42 (PDF)
Dennefeld, M.
A History of the Magellanic Clouds and the European Exploration of the Southern Hemisphere

DOI:
10.18727/0722-6691/5210
ADS BibCode:
2020Msngr.181...37D
Section:
Astronomical News
Author(s)/Affiliation(s):
Dennefeld, M.
AA(Institut d’Astrophysique de Paris (IAP), CNRS & Sorbonne Université, France)
Abstract:
The Magellanic Clouds were known before Magellan’s voyage exactly 500 years ago, and were not given that name by Magellan himself or his chronicler Antonio Pigafetta. They were, of course, already known by local populations in South America, such as the Mapuche and Tupi-Guaranis. The Portuguese called them Clouds of the Cape, and scientific circles had long used the names of Nubecula Minor and Major. We trace how and when the name Magellanic Clouds came into common usage by following the history of exploration of the southern hemisphere and the southern sky by European explorers — which ultimately led to the founding of ESO.
References:
Afonso, G. 2006, Scientific American Brasil, 14, 46; d’Anghierab, P. M., De rebus oceanis et Orbe Novo Decades, 1–3; Dec. 1516, Alcalá de Henares; and 1–8; Dec. 1530 Bensaúde, J. 1912, L’Astronomie Nautique au Portugal à l’Epoque des Grandes Découvertes, (Bern: Max Drechsel) de Barros, J., da Ásia... dos feitos que os Portugueses fizeram no descobrimentos e conquista dos mares e terras do Oriente, Décadas 1–4, Lisbon, 1552–1615. Modern edition 1945, (Lisbon: Agência Geral das Colónias) de Castro, X. 2010, Le voyage de Magellan, (Paris: Éditions Chandeigne) Dekker, E. 1987, Annals of Science, 44, 439; Dorn, B. 1829, Trans. R. Asia. Soc. Gr. Br. & Ir., Vol. 2, No. 1, 371 Drake, Sir F. 1628, The World encompassed, (London: Nicholas Bourne); reprinted 1854 (London: Hakluyt Society) Dunlop, J. 1828, Philos. Trans. Royal. Soc., 118, 113 Ferrand, G. 1928, Introduction à l’Astronomie Nautique Arabe (Paris: Librairie Orientaliste Paul Geuthner) Hakluyt, R. 1589, The Principall Navigations, Voiages and Discoveries of the English Nation (etc.), (London: George Bishop & Ralph Newberie) de Herrera, A. 1601, Historia General de los Hechos de los Castellanos en las Islas i Tierra Firme del Mar Océano (4; Vols.), (Madrid: Juan Flamenco & Juan de la Cuesta) Herschel, Sir John 1847, Results of Astronomical Observation made... at the Cape of Good Hope, (London: Smith, Elder & Co.) de Houtman, F. 1603, Spraeck ende woord-boeck in de Maleysche ende Madagaskarsche Talen, (Amsterdam: Jan Evertsz). Star catalogue transl. into French by Marre, A. 1881, Bull. Sci. Math. et Astron., 5, no. 1, 336; Houzeau, J. C. 1885, Ciel et Terre, Vol. 1, second series, 481; Ideler, L. 1809, Untersuchungen über den Ursprung und die Bedeutung der Sternnamen, (Berlin: J. F. Weiss) van der Kroft, P. 1998, Globi Neerlandici, (Utrecht: HES publishers) Levathes, L. 1994, When China Ruled the Seas, (New York: Simon & Schuster) Markham, C. 1911, Early Spanish Voyages to the Strait of Magellan, (London: Hakluyt Society) Fernández de Navarrete, M. 1837, Colección de los viajes y descubrimientos que hicieron por mar los españoles desde fines del siglo XV, Vol. 4, (Madrid: Imprensa Real) Nuttall, Z. 1914, New light on Drake/A Collection of Documents relating to his Voyage of Circumnavigation/1577–1580, (London: Hakluyt Society) Pozo Menares, G. & Canio Llanquinao, M. 2014, Wenumapu: Astronomia Mapuche, (Santiago: Ocho Libros) Ramusio, G. B. 1550, Navigationi e Viaggi, (Venice: Lucantionio Giunti) Rümker, C. 1832, Preliminary catalogue of fixed stars intended for a Prospectus of a Catalogue of the Stars of the Southern Hemisphere included within the Tropic of Capricorn now reducing from the observations made in the Observatory at Paramatta by Charles Rümker, (Hamburg: Perthes & Besser) al-Sufi, A. al-R. 964, Suwar al-Kawakib, Description des étoiles fixes, trans. by Schjellerup, H. C. 1874, (St. Petersburg), reprinted 1986, (Frankfurt/Main: Universität) Torres de Mendoza, X. 1879, Annuario Hidrográfico de la Marina de Chile, 5, 450; Transylvanus, M. 1523, De moluccis insulis, (Köln, Paris, Rome) Vespucci, A. 1504, Mundus Novus: Firenze, Paris, Augsburg, etc..., also in 1507, Paesi novamente retrovati, (Venezia), and in Ramusio, G. B. 1550
43-48 (PDF)
Cioni, M.-R.L., Romaniello, M. et al.
Report on the ESO Workshop “A Synoptic View of the Magellanic Clouds: VMC, Gaia, and Beyond”

DOI:
10.18727/0722-6691/5211
ADS BibCode:
2020Msngr.181...43C
Section:
Astronomical News
Author(s)/Affiliation(s):
Cioni, M.-R.L.; Romaniello, M.; Anderson, R.I.
AA(Leibniz-Institut für Astrophysik Potsdam (AIP), Germany) AB(ESO) AC(ESO)
Abstract:
The year 2019 marked the quincentenary of the arrival in the southern hemisphere of Ferdinand Magellan, the namesake of the Magellanic Clouds, our nearest example of dwarf galaxies in the early stages of a minor merging event. These galaxies have been firmly established as laboratories for the study of variable stars, stellar evolution, and galaxy interaction, as well as being anchors for the extragalactic distance scale. The goal of this conference was to provide fertile ground for shaping future research related to the Magellanic Clouds by combining state-of-the-art results based on advanced observational programmes with discussions of the highly multiplexed wide-field spectroscopic surveys that will come online in the 2020s.
References:
Cioni, M.-R. L. et al. 2019, The Messenger, 175, 55
49-50 (PDF)
Gendron-Marsolais, M.-L., Jones, M.
Fellows at ESO

DOI:
10.18727/0722-6691/5213
ADS BibCode:
2020Msngr.181...49E
Section:
Astronomical News
Author(s)/Affiliation(s):
Gendron-Marsolais, M.-L.; Jones, M.
AA(ESO) AB(ESO)
51-51 (PDF)
ESO
Personnel Movements

ADS BibCode:
2020Msngr.181...51E
Section:
Astronomical News
Author(s)/Affiliation(s):
ESO