Messenger No. 169 (September 2017)

« Back to The Messenger home

The Organisation

2-3 (PDF)
L. Comendador Frutos et al.
The Strategic Partnership between ESO and Australia

DOI:
10.18727/0722-6691/5030
ADS BibCode:
2017Msngr.169....2F
Section:
The Organisation
Author(s)/Affiliation(s):
Comendador Frutos, L.; de Zeeuw, T..; Geeraert, P.
AA(ESO) AB(ESO) AC(ESO)
Abstract:
On 11 July 2017, ESO and the Australian government signed a ten-year Strategic Partnership arrangement giving Australian astronomers access to the La Silla Paranal facilities. The path towards this arrangement is briefly outlined and the details of the Partnership and its implications for both the Australian and ESO astronomical communities are summarised.

Telescopes and Instrumentation

5-10 (PDF)
F. Patat et al.
Period 100: The Past, Present and Future of ESO Observing Programmes

DOI:
10.18727/0722-6691/5031
ADS BibCode:
2017Msngr.169....5P
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Patat, F.; Hussain, G.; Gadotti, D.; Primas, F.
AA(ESO) AB(ESO) AC(ESO) AD(ESO)
Abstract:
1 October 2017 marks the start of ESO Period 100. To celebrate this centenary we look back at the evolution of observing time proposals at ESO. This article examines the way that science is facilitated by ESO and how this has evolved as new technologies mature in order to take advantage of new ideas from astronomers and engineers from across the ESO Member States and beyond. We look at how the first ESO observing periods were defined and how different the calls for proposals and proposal reviews were at that time. We then detail how these processes changed as the VLT started, showing how Service Mode has fundamentally changed how astronomy is being done on the VLT. Finally we look to the future, describing forthcoming instruments and experiments on ESO telescopes and at other facilities hosted onsite. We conclude by describing some of the challenges faced by ESO and the user community and how procedures will need to evolve further to accommodate these.
References:
Alves, J. 2005, The Messenger, 119, 20; Boller, T. & Dwelly, T. 2012, SPIE, 8448, 0XB Breysacher, J. & Waelkens, C. 2001, in Organizations and Strategies in Astronomy, Vol. 2, ed. Heck, A., (Dordrecht: Kluwer Acad. Publ.), 149; Brinks, E., Leibundgut, B. & Mathys, G. 2012, The Messenger, 150, 21; Madsen, C. 2012, The Jewel on the Mountaintop: The European Southern Observatory through Fifty Years, (Weinheim: Wiley-VCH) Mayor, M. & Queloz, D. 1995, Nature, 378, 355; Primas, F. et al. 2015, The Messenger, 161, 6; Patat, F. & Hussain, G. 2013, in Organizations, People and Strategies in Astronomy, Vol. 2, ed. Heck, A., (Duttlenheim: Venngeist), 231
11-15 (PDF)
B. Leibundgut et al.
Scientific Return from VLT instruments

DOI:
10.18727/0722-6691/5032
ADS BibCode:
2017Msngr.169...11L
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Leibundgut, B.; Bordelon, D.; Grothkopf, U.; Patat, F.
AA(ESO) AB(ESO) AC(ESO) AD(ESO)
Abstract:
A statistical analysis of metrics probing the use of VLT instruments yields a perspective on the demand, productivity and impact of individual instruments. The trends in the usage of these instruments provide information that may be useful in determining the timing of potential future instrument upgrades and replacements. We look at the evolution of observing time requests on VLT instruments; this is measured using the number of proposals submitted each semester as well as the requested time. We also look at the publication statistics on all VLT instruments and find that the older workhorse instruments have produced over 1000 publications to date. The most successful VLT instruments produce over 80 publications per year. After an initial increase as they enter operation, most instruments reach a constant rate of publications after between four and eight years and the number of publications and citations only starts to decline after decommissioning. We find that all instruments currently operating show increasing citation counts every year. ESO has regularly upgraded instruments to strengthen their scientific impact.
References:
Abt, H. 1994, PASP, 106, 107; Benn, C. R. & Sanchez, S. F. 2001, PASP, 113, 385; Bergeron, J. & Grothkopf, U. 1999, The Messenger, 96, 28; Crabtree, D. 2014, SPIE, 9149, 91490A Crabtree, D. 2016, SPIE, 9910, 991005; Grothkopf, U. & Meakins, S. 2015, ASP Conference Series, 492, 63; Grothkopf, U. & Meakins, S. 2012, The Messenger, 147, 41; Grothkopf, U. et al. 2005, The Messenger, 119, 45; Grothkopf, U. et al. 2007, The Messenger, 128, 62; Kulkarni, R. R. 2016, arXiv:1606:06674; Leibundgut, B., Grothkopf, U. & Treumann, A. 2003, The Messenger, 114, 46; Leibundgut, B., Kasper, M. & Kuntschner, H. 2016, The Messenger, 166, 62; Madrid, J. P. & Macchetto, F. D. 2007, ASPC, 377, 79; Meylan, G., Madrid, J. & Macchetto, F. 2003, STScI Newsletter, 20, no. 2, 1; Sterzik, M. et al. 2015, The Messenger, 162, 2; Trimble, V. 1995, PASP, 107, 977
16-20 (PDF)
M. Kasper et al.
NEAR: Low-mass Planets in α Cen with VISIR

DOI:
10.18727/0722-6691/5033
ADS BibCode:
2017Msngr.169...16K
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Kasper, M.; Arsenault, R.; Käufl, H.-U.; Jakob, G.; Fuenteseca, E.; Riquelme, M.; Siebenmorgen, R.; Sterzik, M.; Zins, G.; Ageorges, N.; Gutruf, S.; Reutlinger, A.; Kampf, D.; Absil, O.; Carlomagno, B.; Guyon, O.; Klupar, P.; Mawet, D.; Ruane, G.; Karlsson, M.; Pantin, E.; Dohlen, K.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(ESO) AH(ESO) AI(ESO) AJ(Kampf Telescope Optics, Munich, Germany) AK(Kampf Telescope Optics, Munich, Germany) AL(Kampf Telescope Optics, Munich, Germany) AM(Kampf Telescope Optics, Munich, Germany) AN(Astrophysics Research Institute, Université de Liège, Belgium) AO(Astrophysics Research Institute, Université de Liège, Belgium) AP(Steward Observatory, University of Arizona, Tucson, USA; Subaru Telescope, National Astronomical Observatory of Japan, Hilo, USA) AQ(Breakthrough Initiatives, USA) AR(Department of Astronomy, California Institute of Technology, Pasadena, USA) AS(Department of Astronomy, California Institute of Technology, Pasadena, USA) AT(Ångström Laboratory, University Uppsala, Sweden) AU(CEA Saclay, France) AV(Laboratoire d’Astrophysique de Marseille, France)
Abstract:
ESO, in collaboration with the Breakthrough Initiatives, is working to modify the Very Large Telescope mid-IR imager (VISIR) to greatly enhance its ability to search for potentially habitable planets around both components of the binary Alpha Centauri, part of the closest stellar system to the Earth. Much of the funding for the NEAR (New Earths in the Alpha Cen Region) project is provided by the Breakthrough Initiatives, and ESO mostly provides staff and observing time. The concept combines adaptive optics using the deformable secondary mirror at Unit Telescope 4, a new annular groove phase mask (AGPM) coronagraph optimised for the most sensitive spectral bandpass in the N-band, and a novel internal chopper system for noise filtering based on a concept for longer wavelengths invented by the microwave pioneer Robert Dicke. The NEAR experiment is relevant to the mid-infrared METIS instrument on the Extremely Large Telescope, as the knowledge gained and proof of concept will be transferable.
References:
Anglada-Escudé, G. et al. 2016, Nature, 536, 437; Arsenault, R. et al. 2017, The Messenger, 168, 8; Ives, D. et al. 2014, Proc. SPIE, 9154, 91541J Lagage, P. O. et al. 2004, The Messenger, 117, 12; Mawet, D. et al. 2005, ApJ, 633, 1191; Quanz, S. et al. 2015, IJAsB, 14, 279
21-27 (PDF)
F. Bouchy et al.
Near-InfraRed Planet Searcher to Join HARPS on the ESO 3.6-metre Telescope

DOI:
10.18727/0722-6691/5034
ADS BibCode:
2017Msngr.169...21B
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Bouchy, F.; Doyon, R.; Artigau, É.; Melo, C.; Hernandez, O.; Wildi, F.; Delfosse, X.; Lovis, C.; Figueira, P.; Canto Martins, B.L..; González Hernández, J.I..; Thibault, S.; Reshetov, V.; Pepe, F.; Santos, N.C.; de Medeiros, J.R..; Rebolo, R.; Abreu, M.; Adibekyan, V.Z.; Bandy, T.; Benz, W.; Blind, N.; Bohlender, D.; Boisse, I.; Bovay, S.; Broeg, C.; Brousseau, D.; Cabral, A.; Chazelas, B.; Cloutier, R.; Coelho, J.; Conod, U.; Cumming, A.; Delabre, B.; Genolet, L.; Hagelberg, J.; Jayawardhana, R.; Käufl, H.-U.; Lafrenière, D.; de Castro Leão, I..; Malo, L.; de Medeiros Martins, A..; Matthews, J.M.; Metchev, S.; Oshagh, M.; Ouellet, M.; Parro, V.C.; Rasilla Piñeiro, J.L..; Santos, P.; Sarajlic, M.; Segovia, A.; Sordet, M.; Udry, S.; Valencia, D.; Vallée, P.; Venn, K.; Wade, G.A.; Saddlemyer, L.
AA(Observatoire Astronomique de l’Université de Genève, Switzerland) AB(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) AC(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) AD(ESO) AE(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) AF(Observatoire Astronomique de l’Université de Genève, Switzerland) AG(Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Univ. Grenoble Alpes, CNRS, IPAG, France) AH(Observatoire Astronomique de l’Université de Genève, Switzerland) AI(Instituto de Astrofísica e Ciências do Espaço (IA), Universidade do Porto, CAUP, Portugal) AJ(Departamento de Física, Universidade Federal do Rio Grande do Norte (UFRN), Brazil) AK(Instituto de Astrofísica de Canarias (IAC), Spain) AL(Département de physique, de génie physique et d’optique, Université Laval, Canada) AM( National Research Council Canada, Herzberg Institute of Astrophysics, Canada) AN(Observatoire Astronomique de l’Université de Genève, Switzerland) AO(Instituto de Astrofísica e Ciências do Espaço (IA), Universidade do Porto, CAUP, Portugal; Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal) AP(Departamento de Física, Universidade Federal do Rio Grande do Norte (UFRN), Brazil) AQ(Instituto de Astrofísica de Canarias (IAC), Spain) AR( Laboratório de Óptica, Laser e Sistemas da Faculdade de Ciências da Universidade de Lisboa, Portugal; Instituto de Astrofísica e Ciências do Espaço (IA), Universidade de Lisboa, Portugal) AS(Instituto de Astrofísica e Ciências do Espaço (IA), Universidade do Porto, CAUP, Portugal) AT( Centre for Space and Habitability, University of Bern, Switzerland) AU( Centre for Space and Habitability, University of Bern, Switzerland) AV(Observatoire Astronomique de l’Université de Genève, Switzerland) AW( National Research Council Canada, Herzberg Institute of Astrophysics, Canada) AX( Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille (LAM) UMR 7326, France) AY(Observatoire Astronomique de l’Université de Genève, Switzerland) AZ( Centre for Space and Habitability, University of Bern, Switzerland) BA(Département de physique, de génie physique et d’optique, Université Laval, Canada) BB( Laboratório de Óptica, Laser e Sistemas da Faculdade de Ciências da Universidade de Lisboa, Portugal; Instituto de Astrofísica e Ciências do Espaço (IA), Universidade de Lisboa, Portugal) BC(Observatoire Astronomique de l’Université de Genève, Switzerland) BD(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Centre for Planetary Sciences, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada; Department of Astronomy & Astro­physics, University of Toronto, Canada) BE(Laboratório de Óptica, Laser e Sistemas da Faculdade de Ciências da Universidade de Lisboa, Portugal; Instituto de Astrofísica e Ciências do Espaço (IA), Universidade de Lisboa, Portugal) BF(Observatoire Astronomique de l’Université de Genève, Switzerland) BG(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Department of Physics & McGill Space Institute, McGill University, Canada) BH(ESO) BI(Observatoire Astronomique de l’Université de Genève, Switzerland) BJ(Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Univ. Grenoble Alpes, CNRS, IPAG, France) BK( Department of Physics & Astronomy, York University, Canada) BL(ESO) BM(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) BN(Departamento de Física, Universidade Federal do Rio Grande do Norte (UFRN), Brazil) BO(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) BP(Departamento de Física, Universidade Federal do Rio Grande do Norte (UFRN), Brazil) BQ( Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada) BR( The University of Western Ontario, Department of Physics and Astronomy, London, Canada) BS(Instituto de Astrofísica e Ciências do Espaço (IA), Universidade do Porto, CAUP, Portugal) BT(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) BU( Instituto Mauá de Tecnologia, Praça Mauá, Brazil) BV(Instituto de Astrofísica de Canarias (IAC), Spain) BW( Laboratório de Óptica, Laser e Sistemas da Faculdade de Ciências da Universidade de Lisboa, Portugal; Instituto de Astrofísica e Ciências do Espaço (IA), Universidade de Lisboa, Portugal) BX( Centre for Space and Habitability, University of Bern, Switzerland) BY(Observatoire Astronomique de l’Université de Genève, Switzerland) BZ(Observatoire Astronomique de l’Université de Genève, Switzerland) CA(Observatoire Astronomique de l’Université de Genève, Switzerland) CB( Centre for Planetary Sciences, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada; Department of Astronomy & Astrophysics, University of Toronto, Canada) CC(Institut de Recherche sur les Exoplanètes (IREx), Université de, Montréal, Canada; Observatoire du Mont-Mégantic, Département de Physique, Université de Montréal, Canada) CD( Department of Physics and Astronomy, University of Victoria, Canada) CE(Department of Physics, Royal Military College of Canada, Kingston, Canada) CF( National Research Council Canada, Herzberg Institute of Astrophysics, Canada)
Abstract:
The Near-InfraRed Planet Searcher (NIRPS) is a new ultra-stable infrared (YJH) spectrograph that will be installed on ESO’s 3.6-metre Telescope in La Silla, Chile. Aiming to achieve a precision of 1 m s–1, NIRPS is designed to find rocky planets orbiting M dwarfs, and will operate together with the High Accuracy Radial velocity Planet Searcher (HARPS), also on the 3.6-metre Telescope. In this article we describe the NIRPS science cases and present its main technical characteristics.
References:
Almenara, J. M. et al. 2015, A&A, 581, 7; Anglada-Escudé, G. et al. 2016, Nature, 536, 437; Astudillo-Defru, N. et al. 2017, A&A, 602, 88; Berta, Z. K. et al. 2013, ApJ, 775, 91; Berta-Thompson, Z. K. et al. 2015, Nature, 527, 204; Bonfils, X. et al. 2005, A&A, 443, L15; Bonfils, X. et al. 2013, A&A, 549, A109; Charbonneau, D. et al. 2009, Nature, 462, 891; Cloutier, R. et al. 2017, AJ, 153, 9; Conod, U. et al. 2016, Proc. SPIE, 9909, 41; Delfosse, X. et al. 2013, A&A, 553, 8; Deshpande, R. et al. 2013, AJ, 146, 156; Dittmann, J. A. et al. 2017, Nature, 544, 333; Dressing, C. D. & Charbonneau, D. 2015, ApJ, 767, 95; Figueira, P. et al. 2010, Extrasolar Planets in Multi-Body Systems: Theory & observations, EAS Publications Series, 42, 131; Gillon, M. et al. 2016, Nature, 533, 221; Kopparapu, R. K. et al. 2013, ApJ, 765, 131; Mayor, M. et al. 2014, Nature, 513, 328; Önehag, A. et al. 2012, A&A, 542, 33; Rauer, H. et al. 2014, Experimental Astronomy, 38, 249; Ricker, G. R. et al. 2014, Proc. SPIE, 9143, 20; Snellen, I. et al. 2015, A&A, 576, 59; Sullivan, P. W. et al. 2015, ApJ, 809, 77; Woolf, V. M. & Wallerstein, G. 2005, MNRAS, 356, 963; Wyttenbach, A. et al. 2015, A&A, 577, 62

Astronomical Science

29-31 (PDF)
M. Marsset et al.
SPHERE Sheds New Light on the Collisional History of Main-belt Asteroids

DOI:
10.18727/0722-6691/5035
ADS BibCode:
2017Msngr.169...29M
Section:
Astronomical Science
Author(s)/Affiliation(s):
Marsset, M.; Carry, B.; Pajuelo, M.; Viikinkoski, M.; Hanuš, J.; Vernazza, P.; Dumas, C.; Yang, B.
AA(Astrophysics Research Centre, Queen’s University Belfast, UK) AB(Université Côte d’Azur, Observatoire de la Côte d’Azur, Laboratoire Lagrange, CNRS, France; IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Université Paris 06, Université Lille, France) AC(Université Côte d’Azur, Observatoire de la Côte d’Azur, Laboratoire Lagrange, CNRS, France; IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Université Paris 06, Université Lille, France) AD(Department of Mathematics, Tampere University of Technology, Tampere, Finland) AE(Astronomical Institute, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic) AF(Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, France) AG(Thirty Meter Telescope (TMT) Observatory, Pasadena, USA) AH(ESO)
Abstract:
The Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument has unveiled unprecedented details of the three-dimensional shape, surface topography and cratering record of four medium-sized (~ 200 km) asteroids, opening the prospect of a new era of ground-based exploration of the asteroid belt. Although two of the targets, (130) Elektra and (107) Camilla, have been observed extensively for more than fifteen years by the first-generation adaptive optics imagers, two new moonlets were discovered around these targets, illustrating the unique power of SPHERE. In the next two years SPHERE will continue to collect high- angular-resolution and high-contrast measurements of about 40 asteroids. These observations of a large number of asteroids will provide a unique dataset to better understand the collisional history and multiplicity rate of the asteroid belt.
References:
Beuzit, J.-L. et al. 2008, Proc. SPIE, 7014, 18; Carry, B. et al. 2010a, Icarus, 205, 460; Carry, B. et al. 2010b, A&A, 523, A94; Hanuš, J. et al. 2017, A&A, 599, A36; Margot, J.-L. et al. 2015, in Asteroids IV, (Tucson: University of Arizona Press), 355; Marsset, M. et al. 2016, IAU Circular, 9282; Marsset, M. et al. 2017, A&A, 604, A64; Pajuelo, M. et al. 2017, submitted to Icarus Thomas, P. C. et al. 1997, Science, 277, 1492; Viikinkoski, M. et al. 2015a, A&A, 576, A8; Viikinkoski, M. et al. 2015b, A&A, 581, L3; Yang, B. et al. 2016, ApJ, 820, L35
32-37 (PDF)
A. Garufi et al.
Three Years of SPHERE: The Latest View of the Morphology and Evolution of Protoplanetary Discs

DOI:
10.18727/0722-6691/5036
ADS BibCode:
2017Msngr.169...32G
Section:
Astronomical Science
Author(s)/Affiliation(s):
Garufi, A.; Benisty, M.; Stolker, T.; Avenhaus, H.; de Boer, J..; Pohl, A.; Quanz, S.P.; Dominik, C.; Ginski, C.; Thalmann, C.; van Boekel, R.; Boccaletti, A.; Henning, T.; Janson, M.; Salter, G.; Schmid, H.M.; Sissa, E.; Langlois, M.; Beuzit, J.-L.; Chauvin, G.; Mouillet, D.; Augereau, J.-C.; Bazzon, A.; Biller, B.; Bonnefoy, M.; Buenzli, E.; Cheetham, A.; Daemgen, S.; Desidera, S.; Engler, N.; Feldt, M.; Girard, J.; Gratton, R.; Hagelberg, J.; Keller, C.; Keppler, M.; Kenworthy, M.; Kral, Q.; Lopez, B.; Maire, A.-L.; Menard, F.; Mesa, D.; Messina, S.; Meyer, M.R.; Milli, J.; Min, M.; Muller, A.; Olofsson, J.; Pawellek, N.; Pinte, C.; Szulagyi, J.; Vigan, A.; Wahhaj, Z.; Waters, R.; Zurlo, A.
AA(Universidad Autónoma de Madrid, Departamento de Física Teórica, Madrid, Spain; Institute for Astronomy, ETH Zurich, Switzerland) AB(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) AC(Anton Pannekoek Institute for Astronomy, University of Amsterdam, the Netherlands) AD(Institute for Astronomy, ETH Zurich, Switzerland) AE(Sterrewacht Leiden, the Netherlands) AF(Max Planck Institute for Astronomy, Heidelberg, Germany) AG(Institute for Astronomy, ETH Zurich, Switzerland) AH(Anton Pannekoek Institute for Astronomy, University of Amsterdam, the Netherlands) AI(Sterrewacht Leiden, the Netherlands) AJ(Institute for Astronomy, ETH Zurich, Switzerland) AK(Max Planck Institute for Astronomy, Heidelberg, Germany) AL(LESIA, Observatoire de Paris, PSL Research Université, CNRS, Université Paris Diderot, Sorbonne Paris Cité, UPMC Paris 6, Sorbonne Universités, France) AM(Max Planck Institute for Astronomy, Heidelberg, Germany) AN(Max Planck Institute for Astronomy, Heidelberg, Germany) AO(Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, France) AP(Institute for Astronomy, ETH Zurich, Switzerland) AQ(INAF – Osservatorio Astronomico di Padova, Italy) AR(Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, France) AS(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) AT(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) AU(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) AV(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) AW(Institute for Astronomy, ETH Zurich, Switzerland) AX(Max Planck Institute for Astronomy, Heidelberg, Germany) AY(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) AZ(Institute for Astronomy, ETH Zurich, Switzerland) BA(Geneva Observatory, University of Geneva, Versoix, Switzerland) BB(Institute for Astronomy, ETH Zurich, Switzerland) BC(INAF – Osservatorio Astronomico di Padova, Italy) BD(Institute for Astronomy, ETH Zurich, Switzerland) BE(Max Planck Institute for Astronomy, Heidelberg, Germany) BF(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) BG(INAF – Osservatorio Astronomico di Padova, Italy) BH(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) BI(Sterrewacht Leiden, the Netherlands) BJ(Max Planck Institute for Astronomy, Heidelberg, Germany) BK(Sterrewacht Leiden, the Netherlands) BL(LESIA, Observatoire de Paris, PSL Research Université, CNRS, Université Paris Diderot, Sorbonne Paris Cité, UPMC Paris 6, Sorbonne Universités, France) BM(Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Nice, France) BN(Max Planck Institute for Astronomy, Heidelberg, Germany) BO(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) BP(INAF – Osservatorio Astronomico di Padova, Italy) BQ(INAF – Osservatorio Astronomico di Padova, Italy) BR(Institute for Astronomy, ETH Zurich, Switzerland) BS(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) BT(Anton Pannekoek Institute for Astronomy, University of Amsterdam, the Netherlands) BU(Max Planck Institute for Astronomy, Heidelberg, Germany) BV(Max Planck Institute for Astronomy, Heidelberg, Germany) BW(Max Planck Institute for Astronomy, Heidelberg, Germany) BX(Université Grenoble Alpes, Institut de Planétologie et d’Astrophysique de Grenoble, France) BY(Institute for Astronomy, ETH Zurich, Switzerland) BZ(Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, France) CA(Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, France) CB(Anton Pannekoek Institute for Astronomy, University of Amsterdam, the Netherlands) CC(Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, France)
Abstract:
Spatially resolving the immediate surroundings of young stars is a key challenge for the planet formation community. SPHERE on the VLT represents an important step forward by increasing the opportunities offered by optical or near-infrared imaging instruments to image protoplanetary discs. The Guaranteed Time Observation Disc team has concentrated much of its efforts on polarimetric differential imaging, a technique that enables the efficient removal of stellar light and thus facilitates the detection of light scattered by the disc within a few au from the central star. These images reveal intriguing complex disc structures and diverse morphological features that are possibly caused by ongoing planet formation in the disc. An overview of the recent advances enabled by SPHERE is presented.
References:
Andrews, S. M. et al. 2016, ApJ, 820, L40; Avenhaus, H. et al. 2014a, ApJ, 790, 56; Avenhaus, H. et al. 2014b, ApJ, 781, 87; Avenhaus, H. et al. 2017, ApJ, 154, 33; Benisty, M. et al. 2015, A&A, 578, L6; Benisty, M. et al. 2017, A&A, 597, A42; Beuzit, J.-L. et al. 2008, SPIE Conf. Ser., 7014, 18; Chauvin, G. et al. 2017, arXiv:1707.01413; de Boer, J. et al. 2016, A&A, 595, A114; Dohlen, K. et al. 2008, SPIE Conf. Ser., 7014, 3; Fusco, T. et al. 2006, SPIE Conf. Ser., 6272, 62720K Garufi, A. et al. 2016, A&A, 588, A8; Garufi, A. et al. 2017, A&A, 603, A21; Ginski, C. et al. 2016, A&A, 595, A112; Lagrange, A.-M. et al. 2016, A&A, 586, L8; Meeus, G. et al. 2001, A&A, 365, 476; Pohl, A. et al. 2017, A&A, 605, A34; Quanz, S. P. et al. 2011a, The Messenger, 146, 25; Quanz, S. P. et al. 2011b, ApJ, 738, 23; Quanz, S. P. et al. 2012, A&A, 538, A92; Quanz, S. P. et al. 2013, ApJ, 766, L1; Schmid, H. M. et al. 2006, A&A, 452, 657; Siess, L. et al. 2000, A&A, 358, 593; Stolker, T. et al. 2016a, A&A, 595, A113; Stolker, T. et al. 2016b, A&A, 596, A70; Thalmann, C. et al. 2008, SPIE Conf. Ser., 7014, 3; Thalmann, C. et al. 2016, ApJL, 828, L17; van Boekel, R. et al. 2017, ApJ, 837, 132; van der Marel, N. et al. 2016, A&A, 585, 58
38-41 (PDF)
M. Bothwell et al.
ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas

DOI:
10.18727/0722-6691/5037
ADS BibCode:
2017Msngr.169...38B
Section:
Astronomical Science
Author(s)/Affiliation(s):
Bothwell, M.; Cicone, C.; Wagg, J.; De Breuck, C..
AA(Cavendish Laboratory, University of Cambridge, United Kingdom) AB(INAF Osservatorio di Brera, Milan, Italy) AC(SKA Organisation, Macclesfield, United Kingdom) AD(ESO)
Abstract:
We report the completion of the APEX Low-redshift Legacy Survey for MOlecular Gas (ALLSMOG), an ESO Large Programme, carried out with the Atacama Pathfinder EXperiment (APEX) between 2013 and 2016. With a total of 327 hours of APEX observing time, we observed the 12CO(2–1) line in 88 nearby low-mass star-forming galaxies. We briefly outline the ALLSMOG goals and design, and describe a few science highlights that have emerged from the survey so far. We outline future work that will ensure that the ALLSMOG dataset continues to provide scientific value in the coming years. ALLSMOG was designed to be a reference legacy survey and as such all reduced data products are publicly available through the ESO Science Archive Phase 3 interface.
References:
Abazajian, K. N. et al. 2009, ApJS, 182, 543; Baldwin, J. A., Phillips, M. M. & Terlevich, R. 1981, PASP, 93, 5; Boselli, A., Cortesi, L. & Boquien, M. 2014, A&A, 564, 65; Bothwell, M. S. et al. 2014, MNRAS, 445, 2599; Bothwell, M. S. et al. 2016a, MNRAS, 455, 1156; Bothwell, M. S. et al. 2016b, A&A, 595, 48; Cicone, C. et al. 2017, A&A, 604, 53; Lagos, C. Del P. et al. 2011, MNRAS, 418, 1649; Lara-Lopez, M. A. et al. 2010, A&A, 521, 53; Mannucci, F. et al. 2010, MNRAS, 408, 2115; Saintonge, A. et al. 2011, MNRAS, 415, 32; Tremonti, C. A. et al. 2004, ApJ, 613, 898; Wolfire, M. G. et al. 2010, ApJ, 716, 1191
42-47 (PDF)
B. Husemann et al.
The Close AGN Reference Survey (CARS)

DOI:
10.18727/0722-6691/5038
ADS BibCode:
2017Msngr.169...42H
Section:
Astronomical Science
Author(s)/Affiliation(s):
Husemann, B.; Tremblay, G.; Davis, T.; Busch, G.; McElroy, R.; Neumann, J.; Urrutia, T.; Krumpe, M.; Scharwächter, J.; Powell, M.; Perez-Torres, M.; The CARS Team
AA(Max-Planck-Institut für Astronomie, Heidelberg, Germany) AB(Harvard-Smithsonian Center for Astrophysics, Cambridge, USA) AC(School of Physics & Astronomy, Cardiff University, UK) AD(I. Physikalisches Institut, Universität zu Köln, Germany) AE(Sydney Institute for Astronomy, University of Sydney, Australia) AF(Leibniz-Institut für Astrophysik Potsdam, Germany; ESO) AG(Leibniz-Institut für Astrophysik Potsdam, Germany) AH(Leibniz-Institut für Astrophysik Potsdam, Germany) AI(Gemini Observatory, Hawaii, USA) AJ(Center for Astronomy and Astrophysics, Yale University, USA) AK(Instituto de Astrofísica de Andalucía, Granada, Spain)
Abstract:
The role of active galactic nuclei (AGN) in the evolution of galaxies remains a mystery. The energy released by these accreting supermassive black holes can vastly exceed the entire binding energy of their host galaxies, yet it remains unclear how this energy is dissipated throughout the galaxy, and how that might couple to the galaxy’s evolution. The Close AGN Reference Survey (CARS) is a multi-wavelength survey of a representative sample of luminous Type I AGN at redshifts 0.01 < z < 0.06 to help unravel this intimate connection. These AGN are more luminous than very nearby AGN but are still close enough for spatially resolved mapping at sub-kpc scales with various state- of-the art facilities and instruments, such as VLT-MUSE, ALMA, JVLA, Chandra, SOFIA, and many more. In this article we showcase the power of CARS with examples of a multi-phase AGN outflow, diverse views on star formation activity and a unique changing-look AGN. CARS will provide an essential low-redshift reference sample for ongoing and forthcoming AGN surveys at high redshift.
References:
Bertram, T. et al. 2007, A&A, 470, 571; Bischetti, M. et al. 2017, A&A, 598, A122; Busch, G. et al. 2014, A&A, 561, A140; Cicone, C. et al. 2014, A&A, 562, A21; Fischer, T. C. et al. 2013, ApJS, 209, 1; Harrison, C. M. 2017, Nature Astronomy, 1, 0165; Harrison, C. M. et al. 2016, MNRAS, 456, 1195; Husemann, B. et al. 2014, MNRAS, 443, 755; Husemann, B. et al. 2016, A&A, 593, L9; Jahnke, K. et al. 2004, AN, 325, 128; Liu, G., Zakamska, N. L. & Greene, J. E. 2014, MNRAS, 442, 1303; McElroy, R. et al. 2016, A&A, 593, L8; Wisotzki, L. et al. 2000, A&A, 358, 7
48-51 (PDF)
B.P. Venemans
ALMA Observations of z ~ 7 Quasar Hosts: Massive Galaxies in Formation

DOI:
10.18727/0722-6691/5039
ADS BibCode:
2017Msngr.169...48V
Section:
Astronomical Science
Author(s)/Affiliation(s):
Venemans, B.P.
AA(Max Planck Institute for Astronomy, Heidelberg, Germany)
Abstract:
Luminous high-redshift quasars are thought to be hosted by the most massive and luminous galaxies in the early Universe. Over the past few years, we have discovered several quasars at z ~ 7 powered by > 109 M black holes, which allow us to study the formation and evolution of massive galaxies at the highest redshifts. ALMA and PdBI/NOEMA observations have revealed that these z ~ 7 quasars are hosted by far-infrared-bright galaxies with far-infrared luminosities > 1012 L, indicating star formation rates between 100 and 1600 M year–1. High-resolution ALMA imaging of a quasar host at z = 7.1 shows that a high fraction of both the dust continuum and [C II] 158 μm emission comes from a compact region < 2 square kiloparsecs across. Observations of emission from CO and neutral carbon in our z ~ 7 hosts provide the first constraints on the properties of the interstellar medium and suggest that the gas heating is dominated by star formation.
References:
Bañados, E. et al. 2015, ApJL, 805, L8; Carilli, C. L. & Walter, F. 2013, ARA&A, 51, 105; Decarli, R. et al. 2017, Nature, 545, 457; De Rosa, G. et al. 2011, ApJ, 739, 56; De Rosa, G. et al. 2014, ApJ, 790, 145; Gall, C. et al. 2011, A&ARv, 19, 43; Jiang, L. et al. 2007, AJ, 134, 1150; Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511; Kuo, T.-M. & Hirashita, H. 2012, MNRAS, 424, L34; Meijerink, R. et al. 2007, A&A, 461, 793; Mortlock, D. J. et al. 2011, Nature, 474, 616; Seymour, N. et al. 2007, ApJS, 171, 353; Stark, D. P. 2016, ARA&A, 54, 761; Valiante, R. et al. 2014, MNRAS, 444, 2442; Venemans, B. P. et al. 2012, ApJL, 751, L25; Venemans, B. P. et al. 2013, ApJ, 779, 24; Venemans, B. P. et al. 2015, ApJL, 801, L11; Venemans, B. P. et al. 2016, ApJ, 816, 37; Venemans, B. P. et al. 2017a, ApJ, 837, 146; Venemans, B. P. et al. 2017b, ApJ, 845, 154

Astronomical News

53-57 (PDF)
F. Stoehr
The Deadline Flurry Formula

DOI:
10.18727/0722-6691/5040
ADS BibCode:
2017Msngr.169...53S
Section:
Astronomical News
Author(s)/Affiliation(s):
Stoehr, F.
AA(ESO)
Abstract:
When having to deliver work to a fixed deadline people often wait until the very last minute, in part, because they procrastinate. While procrastination has been studied extensively in the psychology literature, few direct measures of human behaviour leading up to a deadline exist. Here we use metadata from the ALMA proposal submission process over the last five years and find that collective human behaviour for submitting work before a deadline can be described spectacularly well by a simple “universal” law. We also analyse this behaviour as a function of several other factors, such as gender, age, proposal size, number of co-authors and the subsequent success of a submitted proposal.
References:
Durakiewicz, T. 2016, Physics Today, 69, 11 Evelyn-White, H. G. 1936, Hesiod, the Homeric Hymns, and Homerica, 3rd rev. ed., (Cambridge, USA: Loeb Classical Library), lines 405–413; Kim, K. & Seo, E. 2015, Personality and Individual Differences, 82, 26; Limpert, E., Stahel, W. A. & Abbt, M. 2001, BioScience, 51, 341; Madap, C. 2016, International Journal of Education and Research, 4, No. 4; Mitzenmacher, M. 2004, Internet Mathematics, 1, 485; Reed, W. J. & Jorgensen, M. 2004, Commun. Stat.-Theory & Methods, 33, 1733; Rotenstein, A., Davis, H. Z. & Tatum, L. 2009, Journal of Accounting Education, 27, 223; Steel, P. & König, C. J. 2006, Academy of Manage- ment Review, 31, 889 Tice, D. M. & Baumeister, R. F. 1997, Psychological Science, 8; Tuckman, B. W. 1999, Educational and Psychologi- cal Measurement, 51, 473
58-59 (PDF)
A. Plunkett et al.
Report on the ESO Workshop "Star Formation from Cores to Clusters"

DOI:
10.18727/0722-6691/5041
ADS BibCode:
2017Msngr.169...58P
Section:
Astronomical News
Author(s)/Affiliation(s):
Plunkett, A.; Comerón, F.; Testi, L.
AA(ESO) AB(ESO) AC(ESO)
Abstract:
This conference on star formation explored the synergies between observations and theory and was timed to facilitate collaborations to prepare observing proposals to use ALMA and ESO facilities. The aim of the conference was to review recent progress and to identify how to advance the field over the coming years with observations and numerical simulations.

59-60 (PDF)
C. Evans et al.
Report on the EWASS Workshop "EWASS 2017 Special Session SS18: The ELT Project Status and Plans for Early Science"

DOI:
10.18727/0722-6691/5042
ADS BibCode:
2017Msngr.169...59E
Author(s)/Affiliation(s):
Evans, C.; Hook, I.; Bono, G.; Ramsay, S.
AA(UK Astronomy Technology Centre, Edinburgh, United Kingdom) AB(Department of Physics, Lancaster University, United Kingdom) AC(Department of Physics, University of Rome “Tor Vergata”, Italy) AD(ESO)
Abstract:
A special session was organised at the 2017 European Week of Astronomy and Space Science (EWASS 2017) this summer. The twin aims of highlighting progress on the ELT Programme to the whole European community and of engaging early-stage researchers in this exciting project were met. A lively programme of talks was presented to a packed room.
References:
de Zeeuw, T., Comerón, F. & Tamai, R. 2017, The Messenger, 168, 2
61-64 (PDF)
H.M.J. Boffin et al.
Report on the ESO Workshop "The Impact of Binaries on Stellar Evolution"

DOI:
10.18727/0722-6691/5043
ADS BibCode:
2017Msngr.169...61B
Section:
Astronomical News
Author(s)/Affiliation(s):
Boffin, H.M.J.; Beccari, G.; Petr-Gotzens, M.G.
AA(ESO) AB(ESO) AC(ESO)
Abstract:
The majority of stars have at least one companion and many will interact during their lifetimes, leading to significant changes in their structure, their further evolution and their chemical composition. One can therefore be sure that almost any kind of important or interesting class of objects has been influenced by binary evolution. This workshop aimed to address these important issues, and attracted 170 registered participants. The main conclusion of the workshop is that the textbooks need to be rewritten to account for the role of binarity in many areas of stellar evolution.
64-66 (PDF)
T. de Zeeuw et al.
Forty Years at ESO — Bernard Delabre and Optical Designs

DOI:
10.18727/0722-6691/5044
ADS BibCode:
2017Msngr.169...64Z
Section:
Astronomical News
Author(s)/Affiliation(s):
de Zeeuw, T.; Lévêque, S.; Pasquini, L.; Péron, M.; Spyromilio, J.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO)
Abstract:
The optical designer Bernard Delabre has retired from ESO after 40 years at the forefront of telescope and instrument optics. A short overview of his achievements and his legacy of astronomical telescopes and instrumenta-tion is presented. Bernard Delabre was awarded the 2017 Tycho Brahe Prize by the European Astronomical Society.
References:
Buzzoni, B. et al. 1984, The Messenger, 38, 9 Delabre, B. et al. 1989, SPIE, 1055, 340; Delabre, B. 2008, A&A, 487, 389; Ellis, R. S. 2016, The Future of Multi-Object Spectroscopy: a ESO Working Group Report, arXiv:1701.01976; Hearnshaw, J. 2009, Astronomical Spectrographs and Their History, (Cambridge: Cambridge University Press) Iwert, O. & Delabre, B. 2010, SPIE, 7742, 774227; Pasquini, L. et al. 2016, SPIE, 9906, 99063C
66-67 (PDF)
T. de Zeeuw
Departure of Patrick Geeraert, Director of Administration

ADS BibCode:
2017Msngr.169...66Z
Section:
Astronomical News
Author(s)/Affiliation(s):
de Zeeuw, T.
AA(ESO)
67-68 (PDF)
J. Spyromilio, P. Dierickx
Jerry Nelson — An Appreciation of his Pioneering Telescope Work

DOI:
10.18727/0722-6691/5045
ADS BibCode:
2017Msngr.169...67S
Section:
Astronomical News
Author(s)/Affiliation(s):
Spyromilio, J.; Dierickx, P.
AA(ESO) AB(ESO)
68-70 (PDF)
A. Plunkett, H.W. Yen
Fellows at ESO

DOI:
10.18727/0722-6691/5046
ADS BibCode:
2017Msngr.169...68E
Section:
Astronomical News
Author(s)/Affiliation(s):
Plunkett, A.; Yen, H.W.
AA(ESO) AB(ESO)
70-70 (PDF)
ESO
Personnel Movements

ADS BibCode:
2017Msngr.169...70E
Section:
Astronomical News
Author(s)/Affiliation(s):
ESO