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1. Deconvolution

Much effort is presently devoted to the
improvement of the spatial resolution of
astronomical images, either via the in-
troduction of new observing techniques
(as interferometry or adaptive optics) or
via a subsequent numerical processing
of the image (deconvolution).

In the following, we briefly describe
the basic ideas behind a new deconvo-
lution technique which overcomes some
of the drawbacks of the traditional meth-
ods and which gives results of high
photometric and astrometric accuracy.
We also show how it can be combined
with other techniques (e.g. adaptive op-
tics) to give even better results.

An observed image may usually be
mathematically expressed as a convolu-
tion of the original light distribution with
the “total instrumental profile” – the lat-
ter being the image of a point source
obtained with the instrument consid-
ered, including the atmospheric seeing if
the telescope is ground-based. The total
blurring function is called the Point
Spread Function (PSF) of the image.

Thus, the imaging equation may be
written:

           d (x
→
) = t (x

→
) ∗ ƒ(x

→
) + n (x

→
)           (1)

where ƒ (x
→
) and d (x

→
) are the original and

observed light distributions, t (x
→
) is the

total PSF and n (x
→
) the measurement

errors (noise) affecting the data.

The aim of deconvolution may be
stated in the following way: given the
observed image d (x

→
) and the PSF t (x

→
),

recover the original light distribution
ƒ(x

→
). Being an inverse problem, decon-

volution is also an ill-posed problem,
and no unique solution can be found,
especially in the presence of noise. This
is due to the fact that many light distribu-
tions are, after convolution with the PSF,
compatible within the error bars with the
observed image. Therefore, regularisa-
tion techniques have to be used in order
to select a plausible solution amongst
the family of possible ones and a large
variety of deconvolution methods have
been proposed, depending on the way
this particular solution is chosen (in

Figure 1: Deconvolution of a simulated image of a star cluster partly superimposed on a background galaxy. Top left: true light distribution with 2
pixels FWHM resolution; bottom left: observed image with 6 pixels FWHM and noise; top middle: Wiener filter deconvolution of the observed
image; bottom middle: 50 iterations of the accelerated Richardson-Lucy algorithm; top right: maximum  entropy deconvolution; bottom right:
deconvolution with our new algorithm.
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general, the selected solution is the
smoothest according to some pre-de-
fined criterion, e.g., the image with the
largest entropy).

In order to choose the correct answer
in the family of possible solutions to this
inverse problem, it is also very useful to
consider any available prior knowledge.
One such prior knowledge is the positiv-
ity of the light distribution: no negative
light flux can be recorded, so that all
solutions with negative values may be
rejected. The maximum entropy method
automatically ensures positivity of the
solution. This is also the case, under
certain conditions, for other popular
methods, such as the Richardson-Lucy
iterative algorithm (Richardson, 1972;
Lucy, 1974).

However, most of the known decon-
volution algorithms suffer from a number
of weak points which strongly limit their
usefulness. The two most important
problems in this respect are the follow-
ing: (1) traditional deconvolution meth-
ods tend to produce artefacts in some
instances (e.g. oscillations in the vicinity
of image discontinuities, or around point
sources superimposed on a smooth
background); (2) the relative intensities
of different parts of the image (e.g.
different stars) are not conserved, thus
precluding any photometric measure-
ments. In the following, we identify the
main cause of these problems and show
how to circumvent it.

2. Sampling

The sampling theorem (Shannon,
1949, Press et al., 1989) determines the
maximal sampling interval allowed so
that an entire function can be recon-
structed from sampled data.

The imaging instruments are general-
ly designed so that the sampling theo-
rem is approximately fulfilled in average
observing conditions. A typical sampling
encountered is p 2 sampling intervals
per FWHM of the PSF (this does not

ensure good sampling for high S/N im-
ages, but is roughly sufficient at low S/N).

The main problem with classical de-
convolution algorithms is the following: if
the observed data are sampled so that
they just obey the sampling theorem, the
deconvolved data will generally violate
that same theorem. Indeed, increasing
the resolution means recovering highest
Fourier frequencies, so that the correct
sampling would become denser.

This is particularly true if the image
contains point sources, which is gener-
ally the case for astronomical images.
Indeed, the angular diameters of most
stars (<< 0.001 arcsec) are so small
compared to the sampling interval
(p 0.1 arcsec) that they may be consid-
ered as point sources (“δ-functions”). In
such an instance, it would be hopeless
to reduce the sampling interval in an
attempt to obtain a good sampling of
such “δ-functions”.

This is the source of some of the
artefacts present in the deconvolved
images and, in particular, of the “ringing”

around point sources superimposed on
a diffuse background. The origin of this
“ringing” may be intuitively understood in
the following way.

If a point source is located between
two sampling points (as will generally be
the case), in order to correctly reproduce
its position, the deconvolution algorithm
will have to distribute its intensity over
several sampling points. But, then, the
width of the source will be too large and
ringing will appear as the algorithm at-
tempts to decrease the intensity on the
edges of the reconstructed source, in
order to keep the re-convolved model as
close as possible to the observed data.

In fact, it is not possible to correctly
reproduce both the position and the
width of a sampled point source. To
reproduce the zero width, the full signal
must be concentrated on a single sam-
pling point. On the other hand, to repro-
duce the position with a precision which
is better than the sampling interval, the
signal has to be distributed over several
points.

3. Solution

The correct approach to this sampling
problem is thus not to deconvolve with
the total PSF t(x

→
), but rather with a

narrower function s (x
→
) chosen so that

the deconvolved image has its own PSF
r(x

→
) compatible with the adopted sam-

pling. These three functions are simply
related by:

         t (x
→
) = r (x

→
) ∗ s (x

→
)           (2)

The shape and width of r (x
→
) can be

chosen by the user. The only constraint
is that Eq. (2) admits a solution s (x

→
). The

function s (x
→
) by which the observed

image has to be deconvolved is thus
obtained as the deconvolution of the
total PSF t (x

→
) by the final PSF r (x

→
). Of

course, the sampling interval of the de-
convolved image does not need to be
equal to the sampling interval of the

Figure 2: Deconvolution of a pre-discovery image of the Cloverleaf gravitational mirage ob-
tained with the ESO/MPI 2.2-m telescope at La Silla (Chile). Left: observed image with a FWHM
resolution of 1.3 arcsec; right: our deconvolution with improved sampling and a FWHM
resolution of 0.5 arcsec.

Figure 3: Deconvolution of an image of the compact star cluster Sk 157 in the Small Magellanic
Cloud. Left: image obtained with the ESO/MPI 2.2-m telescope at La Silla (1.1 arcsec FWHM);
right: deconvolution with our algorithm (0.26 arcsec FWHM).
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original image, so that r (x
→
) may be much

narrower than t (x
→
), even if the original

sampling would not allow it.
Thus, the deconvolution algorithm

should not attempt to determine the light

distribution as if it were obtained with an
ideal instrument (e.g. a space telescope
with a primary mirror of infinite size).
This is forbidden as long as the data are
sampled. Rather, the aim of deconvolu-

tion should be to determine the light
distribution as if it were observed with a
better instrument (e.g. a 10-m space
telescope).

Deconvolution by s(x
→
) ensures that

the solution will not violate the sampling
theorem. It also has a very important
additional advantage: if the image con-
tains point sources, their shape in the
deconvolved image is now precisely
known: it is simply r (x

→
). This is a very

strong prior knowledge, and it may be
used to constrain the solution ƒ(x

→
),

which can be written as the sum of
smooth background plus a number of
point sources, whose intensities and
positions are unknown.

Another prior knowledge can be used
to constrain the solution: indeed, the
background itself should not contain any
Fourier component with frequency high-
er than allowed by the final deconvolved
PSF r (x

→
), and this knowledge can be

used to force smoothness on the scale
length of r (x

→
).

4. Examples

Figure 1 compares the results of our
new deconvolution algorithm to those of
three classical methods in the case of a
simulated star cluster partly superim-
posed on a smooth background (e.g. a

Figure 4: Simultaneous deconvolution of simulated images. Top left: true light distribution with 2
pixels FWHM resolution; top middle: image obtained with a space telescope; top right: image
obtained with a large ground-based telescope; bottom left: sum of the two images; bottom
middle: simultaneous deconvolution with Lucy’s algorithm; bottom right: simultaneous deconvo-
lution with our new algorithm.

Figure 5: Simultaneous deconvolution of 4 simulated adaptive-optics-like images. Top left: true light distribution with 2 pixels FWHM resolution;
middle and right: 4 images obtained with the same instrument but in varying atmospheric conditions; bottom left: simultaneous deconvolution with
our new algorithm.
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distant elliptical galaxy). It is clear that
our result is free from the artefacts
present in the other methods and that it
allows an accurate reconstruction of the
original light distribution.

An application to real astronomical
data is shown on Figure 2, which dis-
plays a mediocre-resolution image of
the “Cloverleaf”, a gravitationally lensed
quasar (Magain et al., 1988), together
with the deconvolved version, using a
sampling interval twice as short. The
four lensed images, which were unre-
solved in the original data, are complete-
ly separated after deconvolution. The
deduced fluxes are fully compatible with
those measured on higher-resolution
images and, although the original reso-
lution is 1.3 arcsec only and the pixel
size is 0.35 arcsec, the deduced image
positions are accurate to 0.01 arcsec.

Figure 3 illustrates the deconvolution
of an image of the compact star cluster
Sk 157 in the Small Magellanic Cloud
(Heydari-Malayeri et al., 1989). The
original image was obtained with the
ESO/MPI 2.2-m telescope at La Silla, in
average seeing conditions (1.1 arcsec
FWHM). While the original maximum
entropy deconvolution (Heydari-Malay-
eri et al., 1989) allowed to resolve the
cluster into 12 components, our new
algorithm detects more than 40 stars in
the same area.

Another important application of our
algorithm is the simultaneous deconvo-
lution of different images of the same
field. These images may be obtained
with the same instrument or with different
ones. The solution is then a light distribu-
tion which is compatible with all the im-
ages considered. Our technique even al-
lows to let, e.g., the intensities of the
point sources converge to different val-
ues in the different images, so that varia-
ble objects may be considered. This
should be very useful for the photometric
monitoring of variable objects in crowded
fields (e.g. Cepheids in distant galaxies).

Figure 4 illustrates this simultaneous
deconvolution on simulated images, the
first of which has a good resolution but a
poor S/N (as might be obtained with a
space telescope) and the second one a
low-resolution and a high S/N (a typical
image from a large ground-based tele-
scope). Contrary to Lucy’s method
(Lucy, 1991) which is very sensitive to
the noise present in one of the images,
our technique allows to reliably recover
both the high resolution of the space
image and the hidden information con-
tent of the ground-based one.

In the same spirit, our algorithm is well
adapted to the processing of images
obtained with adaptive optics tech-
niques. In the latter, numerous short
exposures of the same field are usually
obtained, the shape of the mirror being
continuously adapted to correct for at-
mospheric distortions. So, the observa-
tions consist in a number of images of
the same field, each of them having its

own PSF. Performing a simple sum
results in an image whose spatial reso-
lution is typical of the average observing
conditions, while a simultaneous decon-
volution not only allows to take count of
the best conditions, but even results in
an improved resolution by optimally
combining the information content of the
different images. A simple illustration of
these considerations is provided by Fig-
ure 5, which shows the simultaneous
deconvolution of four adaptive-optics-
like images of the same field, where the
PSF as well as the image centring vary
from one observation to the other.

Traditional deconvolution methods
are notoriously unable to give photomet-
rically accurate results. The main rea-
sons are that (1) the rings which tend to
be produced around point sources may
interfere with neighbouring objects so
that the flux is redistributed between the
sources and (2) the smoothing recipe
generally forces the stars to deviate as
little as possible from the background,
so that the intensity peaks are generally
underestimated.

Our algorithm naturally avoids these
two biases, as is illustrated in Figure 6,
which shows the results of a photometric
test applied to a synthetic field contain-

Figure 6: Photometric test performed on a synthetic field containing 200 stars with random
positions and intensities, nearly all blended to various degrees. The relative errors are plotted
against the total intensity (the latter being on an arbitrary scale, corresponding to an integrated
S/N varying from 10 to 400). Open symbols represent heavily blended stars (the distance to the
nearest neighbour is smaller than the FWHM), filled symbols correspond to less blended
objects. The dashed curves are the theoretical 3σ errors for isolated stars, taking into account
the photon noise alone.

ing 200 stars in a 128 × 128 pixels
image, nearly all the stars being blended
to various degrees (197 stars out of 200
have the nearest neighbour within 2
FWHMs). Moreover, these stars are su-
perimposed on a variable background.
Figure 6 clearly shows that no syste-
matic error is present, and that the
intensities of all but the most severely
blended objects are reproduced with
errors compatible with the photon noise.

More details about the deconvolution technique
and  astronomical  applications  can  be  found  at:
http://vela.astro.ulg.ac.be/imaproc
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