The Prediction of On Site Telescope Performance

D. S. Brown

The acceptance tests of an optical mirror are most
often based on measurements of the slopes on its
surface and the geometrical concentration of
light. However, the result depends rather critically
on the way of sampling and, furthermore, the final
quality of the telescope is a combination (con-
volution) of many parameters: the optical quality,
seeing, guiding, etc.

Dr. D.S. Brown is responsible for the manufac-
turing and testing at Grubb Parson’s workshop in
Newcastle upon Tyne, which has recently polish-
ed the 1.5 m mirror for the new Danish telescope
on La Silla and the optics for the 3.6 m CAT. Hav-
ing spent most of his warking life in the manufac-
ture of astronomical optics, he has a keen interest
in the prediction of actual telescope performance,
based on tests in the optical shop. He explains
—with a clear direction towards observing as-
tronomers—that better test methods are now
available which will let the future user know
with good confidence how good (or bad) his new
telescope will be, long before the first real ob-
servations are made.

In a recent Messenger article (No. 17, p. 14) describing the
optical performance of the Danish 1.5 m telescope at La
Silla, Drs. Andersen and Niss refer to the scepticism with
which seasoned observers respond to predictions of image
quality based on works tests. This response is historically
well justified since there are many accounts of works tests
on mirrors indicating levels of performance not achieved
by the telescope when operational. They give some
reasons why operational performance falls short of that
achieved during works tests (flexure, misalignment, see-
ing, guiding errors) but do not explore the reasons why
the effects of these are not allowed for when predictions
are made.

In the past, several factors have made reliable prediction
difficult, but recent advances in knowledge and tech-
nology make it possible to overcome these difficulties. One
major problem has been the lack of reliable quantitative
descriptions of the image deterioration due to seeing, a
second has been the widespread use of geometrical for-
mulae in converting test data (usually in the form of wave-
front slopes) into an intensity distribution in the star image.
A third, less well known difficulty is the occurrence of sys-
tematic errors in some tests. Several test methods (i.e.
Hartmann, Gaviola, shearing interferometer) determine the
mean wavefront slopes over finite areas of wavefront.
These mean slopes can be significantly less than the
“true” slopes at the centres of the averaging areas. Finally
the astronomer usually prefers to define optical quality in
terms of image size, which appears convenient and direct.
Unfortunately it is then necessary to combine the effects
of the various sources of degradation by convolution
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Fig 1. Loss ol sensitivity for test mothods averaging

information over width A in the aperture, for periodic

errors of period P.

and for many astronomers and opticians this is an un-
familiar, time-consuming and often inaccurate process.

Some idea of the scale of the problems can be obtained
by considering one-dimensional sinusoidal errors of dif-
fering period (P). Simple expression can be deduced for
the relationship between the “true' and averaged geomet-
rical slopes, for the diffracted image spread and for the
Strehl Intensity. Figure 1 shows the relationship between
“true" geometrical image width (Go) and the measured
width (G, ) obtained by averaging over an area of width A,
forvalues A= 1and A= 5. For A= 1theloss of sensitivity is
small butfor A= 5itisrelatively large. In many Hartmann or
shearing interferometer tests, values of A between 2 and
7 cm would be used and in the upper part of this range sig-
nificant loss of sensitivity would be expected forerrors with
periods less than 20 cm. Figure 2 shows the relationship
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between the diffracted image width D (separation of first-
order maxima)and Go for errors with Go = 0.5and 1.0 arc-
second. Since D is independent of the amplitude of the
wavefront error, but dependent on period, the curves show
strong dependence on both Go and period.
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Fig 3. Strohl intensity for poriodic errors of geometrical

sproad 0.5 & 1 arc sccond.

The Strehl intensity (ratio of the intensity in the central
maximum to that for an aberration-free wavefront) is
shown in figure 3 for errors with Go = 0.5 and 1.0 arc-
second. For short periods the first-order maxima lie out-
side the geometrical image, but for the periods where
D/Go<1, the two first-order images lie within the geomet-
rical image. Figure 4 shows the fractional energy (E) within
the geometrical image width Go for Go = 0.5 and 1.0 arc-
second.

To obtain an accurate prediction of performance it is
necessary to combine the effects of aperture diffraction,
seeing and telescope aberrations using diffraction-based
calculation. A possible approach is to calculate the point
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Fig 4. Encircled energy for poriodiec errors of geomotrical
mmage width 0.5 and 1.0 arec second. The discontinuity at
P=20 in the curve for G=1.0 is due to the movement of first

order diffracted images into the geometrical width when P

oxceoods this critical valueo.
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Fig 5. Squared MFT data for average seeing (AV), good seeing (GD),
a typical specification (5P), nnd diffraction by an aperture of

1 metre diametor (D1).

spread function (PSF) for the telescope and convolute this
with the atmospheric PSF. An alternative is to make the
calculations in the spatial frequency domain, describing all
the contributions in terms of modulation transfer function
(MTF). The second method is much easier to carry out and
is well established in other optical applications, but pro-
duces a result which astronomers do not easily relate to the
point imaging characteristics of the system. It is not dif-
ficult to transform the MTF for the system into a PSF but
this is often unnecessary since the intensity at the centre of
the image can be obtained very simply from the MTF data.

The value of central intensity for the image of a point
source is approximately equal to the integrated value of
(MTF)*. Central intensities so obtained can only be relative
values and a useful basis for comparison is the central in-
tensity for atmospheric seeing alone. Since the image de-
gradation produced by the telescope will usually be sig-
nificantly less than that produced by the atmosphere, the
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Fig 6. Ratio of central intensities of image after and before
degradation by telescopes for average and good seeing. Dashed
curves are for aberration free telescopes, full curves for

telescopes just meeting the typical specification.
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increase in image diameter will be small. The change in
central intensity is relatively larger and provides a sensitive
and conceptually useful indicator of image quality.
Calculations of telescope-induced degradation of image
quality are easily carried out if the MTF is available. It is in-
teresting to note that the effects of aperture diffraction
alone can be calculated in this way once the atmospheric
MTF is determined. Figure 5 shows curves of (MTF)* for av-
erage and good seeing, diffraction by a 1 metre aperture
and for the aberrations of a telescope mirror just meeting a
typical modern specification. Figure 6 shows the relation-
ship between R (the ratio of central intensities after and be-
fore degradation by the telescope) and telescope aperture,
for average and good seeing. The curves are plotted for dif-
fraction only and for telescopes with aberration corres-
pondingto the typical specification. From figure 6 itis clear
that at small apertures and in average seeing, aberrations
are responsible for only a minor part of the telescope-in-
duced image degradation. For larger apertures and good
seeing the telescope aberrations are more important and it

Neutron Stars
E. J. Zuiderwijk

Itis a common trick among astronomers who give
popular lectures to shock the audience with large
numbers. The statement that a matchbox of mater-
ial from a white dwarf weighs as much as several
large locomotives (or elephants if there are in-
fluential ecologists present) is always of great ef-
fect. But that is all antique by modern comparison.
Now, one cubic millimetre of a neutron star (about
the size of the head of a pin) weighs one million
tons! Dr. Ed Zuiderwijk of the ESO Scientific
Group in Geneva is engaged in a theoretical and
observational study of these incredible objects.
There is still much to be learned from them, both
for physicists who look for the ultimate properties
of matter and for astronomers who wonder how
stars end their life.

Neutron stars areamong the more exotic objectsin the sky.
Their mass is comparable to that of our sun, but their
diameter is as small as 15 kilometres. The matter in these
stars is therefore extremely dense—the density is of the
order of 10'°kg m~*—and is mainly composed of degener-
ate neutrons, thus making the star look like a giant atomic
nucleus.

The prediction that neutron stars should exist was made
by the famous physicist Landau in 1933, immediately fol-
lowing the discovery of the neutron as a constituent of the
atomic nucleus. It took, however, more than 30 years be-
fore they were discovered. Direct evidence for their exis-
tence was found in 1967 when the first radio pulsar was de-
tected. This kind of objects turned out to be rapidly rotating
neutron stars. The widely-accepted idea is that they origi-
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could be argued that the specification used is appropriate
for small apertures but is not sufficiently stringent for
larger telescopes.

The principal advantage of the use of MTF is the simpli-
city of the calculations needed for reliable derivation of the
image quality of a complete system, which can include the
atmosphere, telescope aperture and aberrations. Mea-
surement of MTF for large mirrors does not appear to pre-
sent any major difficulty since any test method capable of
producing reliable wavefront-height data can give the
MTF. To produce data of high accuracy in the spatial fre-
quencies of greatest interest (those where the atmospheric
MTF is appreciably greater than zero), some revision of test
details may be needed. Calculation of central intensity via
MTF provides a simple method of expressing image qual-
ity, and the ratio of the central intensities of the system (at-
mosphere + telescope) to that of the atmosphere alone,
provides a numerical measure of optical performance that
is practical, easily visualized and appropriate to the condi-
tions of use.

nate from supernova explosions where in a final collapse of
the stellar core the exploding star comes to the end of its
evolution. With only one (or possibly two) exceptions all
neutron stars, appearing to us as radio pulsars, are found
to be single, isolated objects. An accurate, direct mass de-
termination for many of these compact stars is therefore
not possible.

The discovery of X-ray binaries with the UHURU satellite
in 1970 revealed, however, that neutron stars also occurin
binary systems. In such a system the neutron star is orbit-
ing a "normal’’ star, the latter being often detectable from
ground-based observatories. The X-rays are produced
when kinetic energy of infalling gas is converted into heat
at the surface of the neutron star. This matter originates
from the "normal’ optical star; the mass transfer occurs
either because this star overflows its Roche lobe or loses
mass by means of a stellar wind. The gravitational potential
at the surface of the neutron star is very large (as the stellar
radius is very small) and causes the gas to arrive with a vel-
ocity of up to one half of the velocity of light (=3.0 x 10° m
sec'). Subsequently the gas is heated to a temperature of
about 10’K, which is high enough for the gas to radiate
strongly in the X-ray region of the spectrum.

Mass Limit

Theoretical models predict the existence of an upper limit
to the mass of a neutron star, above which no stable con-
figuration can exist. A compact object more massive than
this upper limit is expected to collapse completely, pre-
sumably to become a black hole. The numerical value of
this mass limit can be computed from a neutron-star mod-
el; the result depends, however, on which particular model
is used. To be more specific, the choice of the so-called
“equation of state', which describes the relation between
the physical quantities pressure, temperature and density
of the degenerate nuclear material, is of crucial impor-



