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The angular resolution of the Very Large 
Telescope Interferometer (VLTI) and  
the excellent sensitivity of GRAVITY 
have led to the first detection of spa-
tially resolved kinematics of high veloc-
ity atomic gas near an accreting super- 
massive black hole, revealing rotation 
on sub-parsec scales in the quasar  
3C 273 at a distance of 550 Mpc. The 
observations can be explained as the 
result of circular orbits in a thick disc 
configuration around a 300 million solar 
mass black hole. Within an ongoing 
Large Programme, this capability will be 
used to study the kinematics of atomic 
gas and its relation to hot dust in a 
sample of quasars and Seyfert galaxies. 
We will measure a new radius-luminosity 
relation from spatially resolved data and 
test the current methods used to meas-
ure black hole mass in large surveys.

Introduction

Emission lines of atomic gas velocity- 
broadened to widths of 3000– 
10 000 km s–1 are a hallmark of quasars 
and are thought to trace the gravitational 
potential of the central supermassive 
black hole. Despite decades of study 
their physical origin remains unclear. The 
observed properties can be explained  
by emission from discrete, collapsed 
clouds or high-density regions of a con-
tinuous medium. The gas may be part  
of the inflow feeding the black hole or a 
continuous equatorial outflow. Assuming 
a gravitational origin, line widths com-
bined with a measurement of the emis-
sion region size provide an estimate of 
the black hole mass. 

Extensive monitoring campaigns use  
light echoes in a technique called rever-
beration mapping to measure the emis-
sion size, with ongoing work expanding 
the sample size from tens (Kaspi et al., 
2000; Peterson et al., 2004) to hundreds 
(Du et al., 2016; Grier et al., 2017). The 
key result of these studies is that the  
size of the emitting region increases with 
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engines. The key components of AGN  
are small on the sky, at micro- to milli-
arcsecond scales, requiring long baselines 
at the VLTI and Keck Interferometer. AGN 
are also relatively faint sources, so far only 
detected in optical interferometry with 
8–10-metre-class telescopes and instru-
mentation with excellent sensitivity. Con-
tinuum measurements with the Keck 
Interferometer (for example, Kishimoto et 
al., 2011) and the Astronomical Multi- 
BEam combineR (AMBER) on the VLTI 
(Weigelt et al., 2012) provide information 
about hot dust surrounding the nucleus. 
The broad line region (BLR) is even smaller 
(angular size < 0.1 milliarcseconds [mas]) 
and is impossible to resolve in standard 

campaigns to measure R via an estimate 
based on L). Secondary methods so far 
provide all available active galactic nucleus 
(AGN) black hole mass measurements  
in large samples and out to high redshift.

Interferometry provides an independent 
method for spatially resolving AGN central 

luminosity, roughly as R ~ L1/2. That rela-
tionship can be understood as atomic 
gas emission being produced under opti-
mal photoionisation conditions (constant 
received flux). This radius-luminosity rela-
tion allows “secondary” methods for 
estimating black hole masses using a 
single optical spectrum (replacing long 

2.14 2.15 2.16 2.17 2.18 2.19 2.20
Observed wavelength (µm)

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

D
iff

er
en

tia
l p

ha
se

 (°
)

0.2

0.4

0.6

0.8

1.2

1.4

1.6

N
or

m
al

is
ed

 fl
ux

–4,000 –2,000 0 2,000 4,000
Radial velocity (km s–1)

1.0

Phase

BLR model

Pa α flux

–30–20–100102030
Δ Right ascension (µas)

–30

–20

–10

0

10

20

30

Δ
 D

ec
lin

at
io

n 
(µ

as
)

Photocentre

BLR model

PAJet = 222°

2.168

2.170

2.172

2.174

2.176

2.178

O
b

se
rv

ed
 w

av
el

en
gt

h 
(µ

m
)

Δ Right ascension (µas)
–150–100–50050100150

–150

–100

–50

50

100

150

–3

–2

–1

0

1

2

3

R
ad

ia
l v

el
oc

ity
 (1

0
3  

km
 s

–1
)

0

PAJet = 222°

Δ
 D

ec
lin

at
io

n 
(µ

as
)

a

c

b

d

Figure 1. GRAVITY spatially resolves the broad emis-
sion line kinematics of 3C 273. (a) Paa line profile 
(black) and averaged differential phase (blue), show-
ing non-zero phases and a change of sign across 
the broad emission line. (b) Photocentre positions 
measured at each line channel, showing a clear sep-
aration between red and blue which corresponds  
to a velocity gradient at a position angle perpendicu-
lar to the large-scale radio jet of 3C 273 (black line). 

This is the result of net ordered rotation of the 
line-emitting gas. By comparing a kinematic model 
of the emission region (c) to GRAVITY data, we  
find that a thick disc configuration viewed at low 
inclination best explains the data (d). The model also 
provides estimates of the mean emission radius  
and central black hole mass. Adapted from GRAVITY 
Collaboration (2018).
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marily set by rotation in the black hole 
gravitational potential, or by polar outflow 
driven by radiation pressure? And is the 
velocity structure well ordered or 
randomised? 

By modelling the line profile and differen-
tial phase data, we will measure the 
emission region size and construct a new 
radius-luminosity relationship. Our results 
can be compared with those obtained 
independently from reverberation tech-
niques and used to constrain the physical 
origin of the atomic gas. We will also 
study the connection of the atomic gas to 
that of the hot dust continuum which we 
obtain using the same data (for example, 
GRAVITY Collaboration, 2019a & b). The 
angular size of both the hot dust and the 
atomic gas scales with optical flux, which 
makes interferometry well suited for 
studying luminous quasars like 3C 273 as 
well as nearby Seyfert galaxies. A future 
upgrade to the sensitivity of GRAVITY 
could further obtain kinematics, broad 
emission line region size, and black hole 
mass estimates for large samples out to 
a redshift z ~ 2.
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By adopting a kinematic model of the 
Paa emission region as a collection of 
orbiting gas clouds (following Pancoast et 
al., 2014 and Rakshit et al., 2015), we 
measure physical properties of the gas 
distribution and black hole. The data are 
consistent with a thick disc (opening 
angle of 45+9 

–6 degrees) in Keplerian rota-
tion around a supermassive black hole of 
1.5–4.1 × 108 M⊙. The inclination and 
position angles agree with those inferred 
for the radio jet. The measured mean 
emission radius of RBLR = 0.12 ± 0.03 pc 
(at an angular diameter distance of 
548 Mpc) is a factor of about two smaller 
than reported in earlier RM studies (Kaspi 
et al., 2000; Peterson et al., 2004) 
although it is consistent with a recent one 
(Zhang et al., 2019). This first result sup-
ports the fundamental assumptions used 
in reverberation mapping and the sec-
ondary methods used to measure black 
hole mass. For more details, see GRAVITY 
Collaboration (2018).

Outlook

With an approved large programme  
we are carrying out observations of 
~ 10 sources over the next two years, 
spanning four orders of magnitude in 
AGN luminosity. The data will provide 
information on the dominant kinematics 
and the degree of ordered motion in 
atomic gas in the broad emission line 
region, helping us to address the follow-
ing questions: are the line widths pri

imaging, even with the VLTI. Instead, we 
can study its kinematics by measuring 
the photocentre shift of the atomic gas 
relative to the hot dust, as a function of 
wavelength (or velocity) across the emis-
sion line. The photocentre shift results in 
a small differential phase signal <~ 1 degree 
(Rakshit et al., 2015) whose detection 
requires high sensitivity and deep integra-
tions. This is now possible with GRAVITY.

A case study in 3C 273

We observed 3C 273 with GRAVITY 
using the four Unit Telescopes (UTs) over 
eight nights between July 2017 and 
May 2018, with a total on-source integra-
tion time of 8 hours. By combining the 
data from all epochs, we measure the 
interferometric phase with a precision of 
~ 0.1–0.2 degrees per baseline. An aver-
age of three of the six baselines shows 
the detection of an S-shaped phase sig-
nal, corresponding to a spatially resolved 
velocity gradient across the otherwise 
featureless broad Paa emission line (Fig-
ure 1a). From the phase data, we fit for a 
model-independent photocentre position 
at wavelength channels where the line 
emission is strong. We find a clear sepa-
ration between blue and red channels (a 
velocity gradient, Figure 1b), with an ori-
entation perpendicular to the large-scale 
radio jet. This demonstrates net rotation 
of the line emission region. The photo-
centre positions are measured with a typ-
ical precision of 5 µas per channel.

Figure 2. AGN radius-luminosity relationships meas-
ured for hot dust and atomic gas. The hot dust 
measurements include our new GRAVITY results 
(purple solid circles; see GRAVITY Collaboration, 
2019a), as well as those from previous observations. 
For atomic gas, we have detected velocity gradients 
and measured the emission region size for the 
quasar 3C 273 (GRAVITY Collaboration, 2018) with 
another detection and upper limits in deep integra-
tions for two other sources. With an ongoing large 
programme, we aim to expand the sample to roughly 
10 AGN spanning four orders of magnitude in 
luminosity. The results can be compared to the large 
scatter found in reverberation mapping samples 
(different samples as smaller symbols) and to the  
R ~ L0.5 relations found for both dust and atomic gas.
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An Image of the Dust Sublimation Region in the  
Nucleus of NGC 1068

GRAVITY Collaboration (see page 20)

The superb resolution of the Very Large 
Telescope Interferometer (VLTI) and  
the unrivalled sensitivity of GRAVITY 
have allowed us to reconstruct the first 
detailed image of the dust sublimation 
region in an active galaxy. In the nearby 
archetypal Seyfert 2 galaxy NGC 1068, 
the 2 µm continuum emission traces  
a highly inclined thin ring-like structure 
with a radius of 0.24 pc. The observed 
morphology challenges the picture of a 
geometrically and optically thick torus.

Introduction

NGC 1068 is one of the best studied 
nearby active galactic nuclei (AGN), in 
which accretion onto a central super- 
massive black hole contributes a signifi-
cant fraction of the galaxy’s total luminos-
ity. The observation of broad polarised 
emission lines by Antonucci & Miller 
(1985) in the nucleus of this Seyfert gal-
axy was central to the development of 
the unified model that explains the differ-
ences between Seyfert 1 and Seyfert 2 
objects as being due to the presence  
of a nuclear equatorial structure that both 
obscures and scatters the central emis-
sion depending on the line of sight. 

Since the first seminal paper addressing 
its physical properties (Krolik & Begelman, 
1988), and following numerous observa-
tions at many different wavelengths,  
the “torus” concept has evolved and 
been modified considerably. At the same 
time, increases in computational power 
have facilitated detailed modelling of 
clumpy torus structures. Such models 
are consistent with the near- to mid- 
infrared spectral energy distribution as 
well as dust reverberation measurements. 
Observations of almost two dozen 
galaxies using the MID-infrared Interfero-
metric instrument (MIDI) on the VLTI have 
resolved the 1–3 pc scales where warm 
dust is responsible for the mid-infrared 
continuum (Burtscher et al., 2013 and ref-
erences therein). However, measuring  
the size of the small (< 1 pc) region con-
taining hot dust that emits at near-infra-
red wavelengths has been possible in 
very few galaxies. Also, until GRAVITY 
observed NGC 1068, there were no data 
showing spatial structure in this dust sub-
limation region.

Observations and  
Image Reconstruction

Data on NGC 1068 were obtained in 
November and December 2018 using 
GRAVITY and the four 8-metre UTs. 

Under superb conditions, with seeing 
~ 0.5 arcseconds and a coherence time 
of up to 13 ms, it was possible to 
fringe-track on the nucleus of NGC 1068 
despite its large size and moderate 
brightness. The data obtained were of 
excellent quality, with typically < 1% visi-
bility and closure-phase accuracy. The 
wealth of information provided by the six 
VLTI baselines has enabled us to recon-
struct a K-band image based on the 
obtained closure phases and visibilities 
with 3-milliarcsecond (mas) resolution.

We used the publicly available Multi-
aperture image Reconstruction Algorithm 
(MiRA; Thiébaut, 2008) to generate the 
image shown in Figure 1, which contains 
a total flux of 155 mJy. The structures 
present are robust, having been repro-
duced consistently over a wide variety of 
parameter settings, and with a signal 
level much higher than that expected for 
spurious sources. Full details are in 
GRAVITY Collaboration (2019).

A new view of NGC 1068

The image in Figure 1 is dominated  
by knots of continuum arranged in a ring 
around a central hole, with the south- 
western side about a factor of two brighter 
than the north-eastern side. Fitting an 
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