The AMBRE Project: Stellar Parameterisation of ESO Archived Spectra

Patrick de Laverny¹ Alejandra Recio-Blanco¹ C. Clare Worley^{1,2} Marco De Pascale^{1,3} Vanessa Hill¹ Albert Bijaoui¹

- ¹ Laboratoire Lagrange, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d'Azur, France
- ² Institute of Astronomy, Cambridge, UK ³ ESO

AMBRE is a Galactic archaeology project set up by ESO and the Observatoire de la Côte d'Azur in order to determine the stellar atmospheric parameters for the archived spectra from the ESO spectrographs FEROS, HARPS, UVES and GIRAFFE. A total of about 230 000 spectra have now been homogeneously analysed and, for most (i.e., the slow-rotating FGKM-type stars), parameterised by their effective temperatures, surface gravities, global metallicities, *a*-element to iron abundance ratios and radial velocities. The determination of the stellar parameters is carried out using a pipeline that has been specifically developed for AMBRE. This pipeline is based on the MATISSE algorithm initially developed for the analysis of the Gaia Radial Velocity Spectrometer data.

AMBRE: A Galactic archaeology project

Our understanding of the formation and evolution history of the Milky Way has undergone a revolution within just the last decade, owing to the advent of large spectroscopic surveys. These target anything from several thousand up to a few tens of millions of Galactic stars. Past and future Galactic surveys will allow us to trace, with unprecedented detail, the chemical and kinematic history of the Galaxy through an extensive characterisation of its stellar populations, including the oldest low-mass stars formed at the earliest epochs (the fossils of Galactic archaeology). European astronomy plays an important role in such Galactic archaeology surveys and its place will be strengthened in the coming years due to the ESA/Gaia mission (with its Radial

Velocity Spectrometer [RVS]) and the complementary ground-based project, the Gaia–ESO Survey (GES; Gilmore et al., 2012). Recio-Blanco (2012) provides more details about these Galactic surveys, including past and future ones.

In this context, the AMBRE project (AMBRE stands for Archéologie avec Matisse Basée sur les aRchives de l'ESO) was established by ESO and the Observatoire de la Côte d'Azur in 2009 to automatically and homogeneously parameterise stellar spectra archived at ESO. AMBRE analyses the stellar spectra collected with the four ESO high-resolution spectrographs FEROS, HARPS, UVES and GIRAFFE. In total, this dataset consists of more than 326 000 spectra that were collected between 2000 and 2011 (see Table 1).

The main goals of AMBRE are:

- To provide ESO with a database of stellar parameters (stellar radial velocity, effective temperature, surface gravity, mean metallicity and the $[\alpha/Fe]$ chemical index, together with their associated errors) for the archived spectra from the ESO high-resolution instruments. The goal is to make these parameters available to the community and to encourage future use of the ESO archive.
- To rigorously test automated parameterisation algorithms on large spectral datasets covering various ranges in wavelength and resolution, including those adopted by present and future Galactic spectroscopic surveys. The AMBRE project is, for example, connected to the work package that parameterises the Gaia/RVS spectra (DPAC/CU8/GSP-Spec). The AMBRE atmospheric parameters are available for use as standard or calibration data for GES and Gaia.
- To create chemical and kinematical maps of the different Galactic stellar populations in order to carry out Galactic archaeological analysis together with providing new constraints to stellar evolution models based on homogeneous and statistically significant data.

The analysis of the data from the first three spectrographs (FEROS, HARPS and UVES) has now been completed and the data products are under delivery to the ESO Science Archive through Phase 3. They are now publically available¹. In the following sections we briefly describe the status of the AMBRE project, the pipeline analysis on which it is based and present some data produced by this project.

The AMBRE analysis pipeline

The spectra of FGKM-type stars archived by ESO are automatically and homogeneously analysed with a pipeline that has been specifically developed within the AMBRE project.

First, we received the reduced spectra for the four spectrographs from ESO. These spectra resulted from a re-analysis of the observed data by the ESO Data Management and Operations department using an improved reduction pipeline. This has ensured a very high homogeneity in the input data for the AMBRE project. Most of these reduced spectra can be retrieved from the ESO archives.

The AMBRE pipeline is based on the stellar parameterisation algorithm, MATISSE (Recio-Blanco et al., 2006), which was initially developed by the Observatoire de la Côte d'Azur for the analysis of Gaia/ RVS spectra. It is a projection-like method that relies on a grid of synthetic spectra upon which the algorithm is trained. MATISSE has been applied to several Galactic archaeology projects, one of them being AMBRE. Other examples of the application of MATISSE are the stellar parameterisation of GIRAFFE spectra for the study of the CoRoT fields (Gazzano et al., 2010) and of the thick disc outside the Solar Neighbourhood (Kordopatis et al., 2011), as well as the last data release (DR4) of the RAVE Galactic Survey (Kordopatis et al., 2013). MATISSE is also one of the algorithms being used to characterise FGK-type stars in GES (UVES and GIRAFFE spectra).

Spectrograph	Number of spectra	Observations	Publication	
FEROS	21551	2005-2009	Worley et al. (2012)	
HARPS	126688	2003-2010	De Pascale et al. (2013)	Table 1. The spectra
UVES	78593	2000-2010	Worley et al. (2013)	samples for the AMBRE
GIRAFFE	> 100 000	2004-2011	Under analysis	project.

Figure 1. Distribution in the atmospheric parameter and $[\alpha/Fe]$ space of the FGKM-type synthetic spectra grid upon which the AMBRE pipeline is based (see de Laverny et al., 2012 for more details).

As a first step, a specific grid of about 17 000 synthetic spectra was computed for the AMBRE project (de Laverny et al., 2012). So that any of the spectral ranges and resolutions of the ESO spectrographs can be studied, this grid covers the whole optical domain for cool to very cool stars of any luminosity (from dwarfs to supergiants) with metallicities varying from 10^{-5} to 10 times the Solar metallicity. It also considers large variations in the chemical composition of α -elements with respect to iron. The parameter space covered by this grid is illustrated in Figure 1.

The analysis pipeline (see Figure 2) integrates spectral cleaning, signal-to-noise ratio (SNR) estimates, radial velocity determinations (including indicators sensitive to the projected rotational velocity) by cross-correlation with masks specifically built within the AMBRE project, radial velocity correction and iterative spectral normalisation procedures, and, finally, the automatic parameterisation of the spectra per se. Specific wavelength domains were also selected for each spectrograph in order to optimise the analysis computational time and accuracy (for instance, spectral ranges polluted by telluric features and the start and end of spectral orders with lower SNR are disregarded). This pipeline was first developed for the analysis of FEROS spectra (Worley et al., 2012) and it has been the testbed for producing the tools that are used in the analysis of UVES (Worley et al., 2013), HARPS (De Pascale et al., 2013) and GIRAFFE archived spectra.

The main products of this pipeline are the stellar radial velocity, the stellar atmospheric parameters (effective temperature, surface gravity and mean metallicity), and the enrichment in α -elements versus iron abundances ([α /Fe] chemical index)

Figure 2. The AMBRE analysis pipeline as defined for the FEROS spectra and upon which the analysis of the archived spectra for the other three spectrographs is based (see Worley et al. [2012] for a detailed description). together with their associated (internal and external) errors. Quality flags for these parameter estimates are also produced. We point out that external errors are estimated from the analyses of stellar atlases of well-known stars (the Sun, Procyon and Arcturus) and spectral libraries of reference samples (several hundreds of stars) found in the literature. Moreover, the analysis of the repeated observations by a given spectrograph allows us to estimate the internal errors of the adopted procedure (as an example, about 5% of the HARPS spectra correspond to the same stars — which may have been observed more than 20 times). Finally, typical total errors on the mean metallicity and the [α /Fe] ratios are around 0.1 dex and 0.05 dex, respectively, for spectra having SNR > ~ 25.

Results: AMBRE parameterisation of FGKM-type stars

We have presently analysed about 230 000 spectra archived by ESO and collected with FEROS, HARPS and UVES (see Table 1) and fully parameterised about two thirds of them. We

 Table 2. The list of AMBRE data products for FEROS spectra that have been ingested into the ESO archives (taken from Worley et al. [2012]). Similar tables have been produced for the other spectrographs.

adopted several selection criteria to construct the final tables of stellar parameters. These criteria are based on the different quality flags produced by our procedure resulting in the rejection of the low SNR spectra, hot and/or fastrotating stars, and/or the detection of non-standard spectra (binaries, chemically peculiar stars and so on), for which the AMBRE analysis pipeline has not been developed.

We finally provided ESO with the stellar parameters of ~ 6500 FEROS spectra (corresponding to ~ 3100 different stars),

Keyword	Definition	Value range	Null value	Determination
DP_ID	ESO dataset identifier			
OBJECT	Object designation as read in ORIGFILE			
TARG_NAME	Target designation as read in ORIGFILE			
RAJ2000	Telescope pointing (right ascension, J2000)	deg.		
DEJ2000	Telescope pointing (declination, J2000)	deg.		
MJD_OBS	Start of observation date	Julian Day		
EXPTIME	Total integration time	sec.		
SNR	Signal-to-noise ratio as estimated by the pipeline	0	NaN	
SNR_FLAG	Signal-to-noise ratio quality flag	C, R		C = Crude estimate from SPA*, R = Refined estimate from SPC#
EXTREME_EMISSION_LINE_FLAG	Detection of extreme emission lines	T, F		T = True: detection therefore no analysis carried out, F = False: no detection therefore analysis carried out
EMISSION_LINE_FLAG	Detection of some emission lines	T, F		T = True: some emission lines detected but analysis carried out, F = False: no detection therefore analysis carried out
MEANFWHM_LINES	Mean FWHM of absorption lines around 4500 Å	0-0.33	NaN	FWHM measured from spectral features (mÅ)
MEANFWHM_LINES_FLAG	Flag on the mean FWHM	T, F		T = True: FWHM > 0.33 or < 0.11. Default FWHM values used F = False: FWHM < 0.33, > 0.11
VRAD	Stellar radial velocity	-500 to +500	NaN	Units = km s ^{-1}
ERR_VRAD	Error on the radial velocity	0−∞	NaN	If σ_{vrad} > 10, null value used for all stellar parameters. Units = km s^{-1}
VRAD_CCF_FWHM	FWHM of the CCF between the spectrum and the binary mask	0−∞	NaN	Units = km s ⁻¹
VRAD_FLAG	Quality flag on the radial velocity analysis	0, 1, 2, 3, 4, 5	-99	0 = Excellent determination 5 = Poor determination
TEFF	Stellar effective temperature ($T_{\rm eff}$) as estimated by the pipeline	3000-7625	NaN	Units = K. Null value used if $T_{\rm off}$ is outside accepted parameter limits or if the spectrum is rejected due to quality flags
ERR_INT_TEFF	Effective temperature internal error	0-∞	NaN	Units = K. Square root of quadrature sum of internal errors $(\sigma(T_{eff})_{int sorp} \sigma(T_{eff})_{int sorp} \sigma(T_{eff})_{int sorp})$
ERR_EXT_TEFF	Effective temperature external error	120	NaN	Units = K. Maximum expected error due to external sources
LOG_G	Stellar surface gravity (log g) as estimated by the pipeline	1-4.9	NaN	Units = dex. Null value used if log g is outside accepted param- eter limits or if the spectrum is rejected due to quality flags
ERR_INT_LOG_G	Surface gravity internal error	0-∞	NaN	Units=dex. Square root of quadrature sum of internal errors $(\sigma(\log g)_{int snr}, \sigma(\log g)_{int virid} \& \sigma(\log g)_{int norm})$
ERR_EXT_LOG_G	Surface gravity external error	0.2	NaN	Units = dex. Maximum expected error due to external sources
M_H	Mean metallicity [M/H] as estimated by pipeline	0-∞	NaN	Units = dex. Null value used if [M/H] is outside accepted param- eter limits or if the spectrum is rejected due to quality flags.
ERR_INT_M_H	Mean metallicity internal error	0-∞	NaN	Units = dex. Square root of quadrature sum of internal errors $(\sigma([M/H])_{int.snr}, \sigma([M/H])_{int.vrad} \& \sigma([M/H])_{int.norm})$
ERR_EXT_M_H	Mean metallicity external error	0.1	NaN	Units = dex. Maximum expected error due to external sources
ALPHA	α-elements over iron enrichment ([α/Fe]) as estimated by pipeline	-0.4-0.4	NaN	Units = dex. Null value used if $[\alpha/Fe]$ is outside accepted parameter limits or if the spectrum is rejected due to quality flags
ERR_INT_ALPHA	$\alpha\text{-elements}$ over iron enrichment internal error	0−∞	NaN	Units=dex. Square root of quadrature sum of internal errors $(\sigma([\alpha/Fe])_{int.snr}, \sigma([\alpha/Fe])_{int.ynr} \& \sigma([\alpha/Fe])_{int.norm})$
ERR_EXT_ALPHA	α-elements over iron enrichment external error	0.1	NaN	Units = dex. Maximum expected error due to external sources
CHI2	chi ² of fit between observed and reconstructed synthetic spectrum for MATISSE parameters	0-∞	NaN	Goodness of fit between final normalised and final reconstructed spectra
CHI2_FLAG	Quality flag on fit between observed and recon- structed synthetic spectrum for MATISSE parame- ters	0, 1, 2	-99	0 = Good fit 2 = Poor fit
ORIGFILE	ESO filename of the original spectrum being analysed			

Figure 3. Hertzsprung–Russell diagrams of a subsample of the analysed spectra for FEROS (left panel, about 3600 spectra) and HARPS (right panel, ~ 75 000 spectra). Metal-poor stars ([M/H] < -1 dex)

are plotted in blue, intermediate metallicity stars $(-1 \le [M/H] < 0 \text{ dex})$ are in green and metal-rich stars $([M/H] \ge 0 \text{ dex})$ in red.

~ 97 000 HARPS spectra (i.e. ~ 11 500 stars), and about 52 000 UVES spectra (around 25 000 stars). Radial velocities were determined for a larger sample of the spectra and are also part of the AMBRE products that have been sent to ESO. All these parameters have been ingested into the ESO archives (as Phase 3 Science Data Products) for storage and subsequent use by the scientific community. An example of all the derived data, their associated errors and different flags (32 entries in total) ingested into the ESO archives for a given spectrum can be seen in Table 2.

Finally, as an illustration of the AMBRE project results, in Figure 3 we show the Hertzsprung–Russell diagrams constructed from the derived stellar parameters of most of the FGKM-type slowrotating stars analysed so far. These estimated stellar atmospheric parameters and chemical indices represent a huge amount of homogeneous and unique data that is ready to be exploited in terms of studies of stellar evolution and Galactic archaeology. We have already started some by-product analyses, such as the building of a catalogue of homogeneous projected rotational velocities of thousands of stars, the study of chromospheric indices in different types of stars, the mapping of the extinction of the interstellar medium, the heavy element content of stars in the Solar vicinity, and the separation of the thin/thick disc populations. Moreover, the AMBRE database is partly used as calibration data for the GES and Gaia surveys. We hope that the scientific community will make extensive use of the AMBRE database for a wealth of other astronomical projects.

Acknowledgements

The AMBRE project has been financially supported by ESO, CNES, Observatoire de la Côte d'Azur (including the Mesocentre computing centre) and CNRS. We sincerely acknowledge L. Pasquini for initiating this project, M. Romaniello and J. Melnick for their help within ESO and F. Mignard for his longlasting support. J.-C. Gazzano and Y. Vernisse are also thanked for their involvement in part of AMBRE.

References

- de Laverny, P. et al. 2012, A&A, 544, 126
- De Pascale, M. et al. 2013, A&A, submitted
- Gazzano, J.-C. et al. 2010, A&A, 523, A91 Gilmore, G. et al. 2012, The Messenger, 147, 25
- Kordopatis, G. et al. 2012, The Messenger, 147, 20
- Kordopatis, G. et al. 2013, ApJ, submitted
- Recio-Blanco, A., Bijaoui, A. & de Laverny, P. 2006, MNRAS, 370, 141
- Recio-Blanco, A. 2012, in *SF2A2012: Proc. Ann. Meeting French Society of Aston. Astrophys.*, eds. V. Boissier et al., 107
- Worley, C. C. et al. 2012, A&A, 542, A48
- Worley, C. C. et al. 2013, A&A, submitted

Links

¹ AMBRE data release: http://archive.eso.org/cms/ eso-archive-news/first-data-release-from-thematisse-oca-eso-project-ambre.html