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some of them are still in use today. The
application of microlens arrays to as-
tronomy brought a revolution in this
field. An area of sky could be divided up
by a monolithic microlens array. The
beams from the microlenses could then
be fed to a spectrometer and many
spectra recorded on the same detector.
The spectrometer design can ensure
that the many individual spectra are
packed on the detector so that there is
minimal overlap. The Tiger, subse-
quently Oasis, instruments used for
many years on the CFHT was the most
successful example of this design prin-
ciple and much science was achieved
from resolving the kinematic compo-
nents of galaxy nuclei to the jet struc-
ture of PMS stars (Bacon et al., 1995).
Using the micropupil principle, the cou-
pling of lens arrays with fibre bundles
allowed more flexible designs even with
several spectrometers. The integral
field mode of the Gemini GMOS instru-
ment uses this design, as does the VLT
FLAMES facility; in VIMOS, currently
the largest IFU unit in operation (80 ×
80 elements), the fibres feed four spec-
trometers. There is no reason in princi-
ple for not extending the number of
spatial elements towards that of the
maximal spectrometer and two propos-

eraged. The TAURUS instrument, used
at many 4-m telescopes, was the most
advanced realization (Atherton et al.,
1982) and emission line maps of many
extended targets were observed. 

Photon-counting detectors could
also be employed in rapid slit-scanning
techniques where the positioning of a
long slit on the sky was synchronized
with the readout of the detector. The
ASPECT system at the AAT (Clark et al.
1984) using the IPCS (Boksenberg &
Burgess 1973) was successfully used
for a number of projects from kinematic
mapping of elliptical galaxies to spatial
abundance mapping of spiral and star-
burst galaxies. The data volumes were
modest with typically ten long slit posi-
tions. Scanning techniques suffer from
changing seeing and transparency,
which also produce line profile varia-
tions for Fabry-Perot spectrometers.

The first attempts to measure simul-
taneously spectra over a 2-dimensional
field were made in the 1980’s with fibre
bundles packed into an area at the tel-
escope focal plane and aligned onto a
common “pseudo-slit’’ of a convention-
al spectrometer. Each fibre generated a
single spectrum on the detector of one
position on the sky. Several prototype
instruments have been developed, and

The process of data-taking sounds
simple – point at a target of interest
(high-precision pointing is not re-
quired), obtain spectra at many spatial
positions (currently hundreds to thou-
sands). The removal of the instrument
signature and the assembly of the data
into a 3D data cube proceeds similarly
to spectroscopic reduction with long
slits except for the much larger volume
of data. However, it is the analysis of
those thousands of spectra which pro-
vides the greatest hurdle. Integral-field
spectrometers in various forms have
been available for decades but the pub-
lications resulting have in no way been
proportional to their data volume, or al-
located telescope time. The sheer
scale of the data analysis and the need
to do justice to the quantity of spectra
has deterred many, and even the 3D
spectroscopy pundits have to admit
that they cannot analyse their data
cubes fast enough. The lack of ade-
quate data-analysis tools is becoming
more  acute  with  the  installation  of
new  common-user  instruments  offer-
ing IFS modes on 8–10-m-class tele-
scopes, such as VIMOS, FLAMES and
SINFONI at the VLT, and GMOS at
GEMINI.

In order to try to ease this “data jam’’,
all the European groups working in 3D
spectroscopy came together in a work-
ing group launched by OPTICON – the
Optical and Infrared Coordination
Network for Astronomy. A proposal for a
Research Training Network (RTN) in
the 5th Framework of the European
Commission was made in which young
post-docs would be enabled to work on
science projects with 3D spectroscopy.
User tools would be developed and
shared to increase the scientific ex-
ploitation and productivity of the data.
The RTN, entitled “Promoting 3D
Spectroscopy in Europe” was awarded
and began on 2002 July 1. Post-docs
are now being sought in ten European
institutes. This article provides a brief
overview of the 3D spectroscopy and a
flavour of what can be expected from
the RTN over the next few years.

2. Growth of 3D Spectroscopy

The first attempts at imaging spec-
troscopy used scanned Fabry-Perot in-
terferometers to observe the velocity
fields of emission lines in gaseous neb-
ulae. Groups at Marseille and Man-
chester used photographic and image-
tube recorders to obtain multiple nar-
row spectral band maps which, when
stacked, allow the line profiles over an
area to be mapped. With the advent of
piezo-scanning Fabry-Perot spectrom-
eters coupled with photon-counting de-
tectors, rapid sampling of the spectral
range could be achieved. The effect of
transparency variations in the atmos-
phere would be reduced by the fast
scanning and many scans could be av-
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on the SEST project, Guillermo went to Sweden to become involved in the proj-
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