initiated FDF follow-up investigations
in other wavelength ranges. The most
extensive of these follow-up studies
is a mapping of the FDF at radio wave-
lengths which is being carried out in
co-operation with colleagues from the
MPI for Radioastronomy, Bonn, at the
VLA.

At present our FDF project is still
work in progress. While our deep
photometric study can probably be
completed within the next few months,
the spectroscopic programme and the
follow-up investigations may keep us
(and other interested groups) busy for
years to come. We hope — and are
optimistic — that these studies will
eventually result in new and impor-
tant insights into the evolution of our
universe, which will perhaps be re-
ported in future issues of The Mes -
senger.
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Figure 7: FORS spectrum of the Lyman forest of the FDF quasar Q0103-260.

1. Introduction

Resampling an image is a standard
operation used in astronomical imaging
for various tasks: changing the scale of
an image to superimpose it on another,
shifting an image by a non-integer off-
set, rotating an image by an arbitrary
angle, or deforming an image to count-
er detector or optical deformations, are
the usual operations in need of image
resampling. In a more general way, this
operation is referred to as image warp -
ing in the digital image processing
world.
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Figure 1: Top left is the original signal, top right its Fourier transform. Bottom left is the sam -

Astronomical Image Resampling

N. DEVILLARD, ESO

2. Sampling a Signal

The stellar light landing on an astro-
nomical detector is a continuous optical
signal. It is sampled by the detector at
precise positions, yielding a regular grid
of intensity values also known as pixels
(for picture elements, often abbreviated
to pel). The initial signal carries by def-
inition an infinite amount of information
(because of its continuity), but it has
been reduced to a finite number of val-
ues by the detector system. The sam-
pling theory has proved that it is possi-
ble to reconstruct the initial signal from
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Sampled signal sporkonm

pled signal and bottom right the Fourier transform of the sampled signal.
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the knowledge of its samples only, pro-
vided that a certain number of assump-
tions are fulfilled.

In our case, we will assume that this
is always the case, i.e. that the pixel
sampling frequency is always greater
than twice the greatest spatial frequen-
cy of the image (Shannon or Nyquist
sampling). This is true for most ground-
based telescopes because the instru-
ments have been designed so, but this
does not apply to some HST instru-
ments for example. In that case, it is still
possible to retrieve the signal, modulo
some assumptions. This is not dis-
cussed in this paper.

3. Sampling Theory

This section provides some back-
ground about the sampling theory in
general. For convenience, a simple
1-dimensional signal S(t) will be used
as a conventional signal, because in
this case the same rules apply to im-
ages understood as 2-dimensional sig-
nals (an intensity as a function of the
pixel position on the detector).

The Fourier transform is a very con-
venient tool to perform an academic
study of this case. It also helps to
see the signal in another space to un-
derstand exactly what is happening
during the various operations per-
formed on it.

The representation of a signal S(t)in
Fourier space is a distribution that has
no energy outside of a certain frequen-
cy range, i.e. it has non-zero values



only inside a given range. This repre-
sentation is symmetrical for real-life sig-
nals, so the non-zero support is com-
pletely defined by the cut-off frequency
fc. Figure 1 shows what a time signal
might look like, and what its represen-
tation in Fourier space would be. Now,
what happens when this continuous
signal is sampled? According to Fourier
theory, sampling a signal with an ideal
sampler is equivalent to convolving it
with a delta function, which is equiva-
lent in Fourier space to multiplying the
signal by a comb function (a regular-
ly-spaced collection of diracs).

The idea for reconstruction is that we
would like at some point to reconstruct
completely the continuous signal, and
then re-sample it, i.e. take new samples
at arbitrary positions. The sampling the-
ory enables that the right assumptions
are fulfilled. What it means in practice in
Fourier space, is that side replica of the
sampled signal spectrum should be re-
moved (the central part of the spectrum
isolated).

This is easily achieved in Fourier
space by multiplying the sampled spec-
trum by a door function (a function that
is 0 everywhere but 1 where the central
spectrum is, see on figure 1 the box
around the central spectrum replica).
Unfortunately, this ideal door function
corresponds to a sine function in the
real space, which has infinite support
and is thus not implementable in
real-life. In other words, perfect recon-
struction can only be achieved mathe-
matically. To build a system that would
achieve the same, we need to have an
infinite quantity somewhere in the sys-
tem, which does not belong to our
real-life domain.

This ideal door function can be ap-
proximated by functions that do not
have an infinite support, though. But as
approximations are not truly the func-
tion, the reconstruction will not exactly
stick to the real signal. The amount of
errors in the reconstructed signal will
depend on how the approximation is
done. The approximated door function
is usually called a kernel in the litera-
ture.

The search for “good” kernels has
lead to a veritable zoo of functions fit for
one purpose or another. Many authors
in very different fields have found ker-
nels that have some interesting proper-
ties that pair ideally with some charac-
teristics of the signals they studied. The
filter domain is one of the key fields in
digital electronics, whether it applies to
sound machines (stereo systems), to
images (television) or any kind of sam-
pling machine. Various kernels are re-
viewed in the next section.

4. Image-Space Interpolation

Another way of reconstructing the
missing parts of the signal between
samples, is to stay in the real space and
create the missing information based

on e.g. some assumptions on the signal
smoothness. In electronics, the follow-
ing reconstruction schemes are often
used for reconstruction:

4.1 Nearest neighbour

Maybe the simplest idea is to say
that the signal value is the one of the
closest sample. This is known as a
zero-order blocking filter, or nearest-
neighbour interpolation. If we study that
carefully, we see that this is strictly
equivalent to applying a box kernel to
the real space, thus a sine function in
the Fourier space.

It means that the central replica of
the sampled spectrum will be multiplied
by a sine function, which is actually a
very bad approximation of the ideal box
kernel. This leads to obvious artefacts
like jagged edges in images or granu-
larity in sound. You can actually hear
that kind of artefact when using noisy
digital telephone lines like mobile
phones: your voice appears deformed
as if it were ringing.

This is due to the fact that the
mobile phone receives voice samples
one by one, and if the line is cut for a
tiny amount of time (some samples
are missing), it keeps emitting the
same sound until it receives more in-
formation. This comes back to sub-
sampling the voice, and reconstructing
it with a very bad reconstruction ap-
proximation. The voice spectrum is
folded and you get that kind of nasty
artefacts.

Nearest-neighbour interpolation is
the cheapest way of reconstructing a
signal and also the dirtiest. It might be
OK if you need speed (e.g. to display a
zoomed image), but certainly not if you
want to preserve the smoothness of the
input signal.

4.2 Linear interpolation

One idea is to draw slope segments
between samples. This corresponds
strictly to a linear approximation of the
values between known samples. In
electronics, this is also referred to as a
first-order blocking filter. Now what is
the quality of a linear interpolation in
real space, if we try to compare it to oth-
er kernels in Fourier space?

Drawing line segments between
samples is strictly equivalent to con-
volving the input signal with a triangle
function (demonstration left to the read-
er). Convolving the signal with a trian-
gle function is then equivalent to multi-
plying its spectrum by the Fourier trans-
form of a triangle, which is a square
sinc function.

A square sinc is better than a sinc: it
is never negative and goes to zero
much faster, which means that other
replica of the central spectrum are less
likely to be included in the reconstruct-
ed spectrum. However, it is still a very
bad approximation of the ideal box

function. It obviously attenuates high
frequencies and tends to deform
low-frequencies. The ringing goes to-
wards zero but not that fast, which
tends to include other replica in the re-
constructed signal.

Linear interpolation is another cheap
way of reconstructing a signal and
might be a good candidate when arte-
facts are not so much an issue. For
every-day digital pictures (television or
photos), this is still valid, but for signals
like astronomical images it is more rea-
sonable to use a smoother reconstruc-
tion.

4.3 Spline interpolation

To preserve a certain smoothness of
the signal between samples, one can
use a set of smooth functions such as
splines. Describing the maths behind
these functions is outside the scope of
this article, it is enough to know that
they tend to reproduce quite well signal
variations, and they are expensive to
compute.

What do they correspond to in
Fourier space? A spline function is usu-
ally obtained by convolving a box func-
tion with itself a certain number of
times. How many times the convolution
is applied determines the level of the
spline functions, which are also referred
to as N-order blocking filters in elec-
tronics.

In Fourier space, that means the N-th
power of the sinc function. As N goes to
higher degrees, the kernel tends to
looks more and more like a gaussian
shape with steep slopes. This is a much
better approximation of an ideal box
function and usually yields the best vi-
sual results with normal images.

Because they are expensive to com-
pute, splines are usually used in their
third order (cubic splines). You can find
that kind of interpolation for images in
all respectable image-processing soft-
ware packages (like PhotoShop or
GIMP). For astronomical images, this is
still a questionable method due to the
noise in images, bringing very high fre-
quencies which are not so well handled
by cubic splines.

4.4 Fourier-based kernels

These interpolation methods are
based on some study happening in
Fourier space, but they are nonetheless
implemented in the image space with-
out ever having the need to convert the
whole image by use of FFT or equiva-
lent means.

As mentioned above, interpolation
kernels can be found by hundreds
in various fields. The most appropri-
ate for image processing are quoted
here:

* Lanczos2 or Lanczos3: these ker-
nels are based on cosine functions,
they are shown to respect quite well the
low-frequency parts of the signal but
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Figure 2: Three different interpolation
schemes.

smooth a little bit the high-frequencies.
This is an issue for noisy images such
as astronomical images.

* Hann and Hamming kernels are
also based on truncated cosine func-
tions. They also tend to smooth out
high frequencies and induce some
rippling in the image space, but pro-
duce very acceptable quality for usual
images.

« Hyperbolic tangent kernel: this is
one of the best-known approximations
of the ideal box function, obtained by
multiplying symmetric hyperbolic tan-
gent functions. It preserves quite well
both high and low frequencies (as ex-
pected for a faithful approximation of a
box function) and induces almost no
rippling in the image space.

The latter kernel (hyperbolic tan-
gent) is the one implemented in the jit-
ter imaging recipe in the ISAAC pipe-
line. More information can be found
about its definition, implementation, and
evaluation in the corresponding article:
http://www.eso.org/projects/dfs/papers/
jitter99/

4.5 Examples
Figure 2 shows an example of the

nearest neighbour, linear, and spline in-
terpolations of the same signal.
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Figure 3 shows various examples of
image interpolations applied to zoom
an example image. Top left is nearest
neighbour, top right is linear, bottom left
is cubic spline, and bottom right is a hy-
perbolic tangent based interpolation
kernel.

5. Spatial Transformations

Now that we know how to create new
samples out of a sampled signal, the
next question is: where do we want to
place these new samples? This of
course depends on the nature of the
operation to be performed on the im-
age.

Shifting an image by a non-integer
offset for example, is a typical operation
in need of pixel interpolation. Obviously,
the worst case is when the shift must be
done up to exactly half a pixel. This is
the place that is the furthest from the
real known samples, thus having the
most invented properties.

Scaling an image (i.e. zooming it in
or out) is also a common operation that
involves interpolation. In your favourite
image displayer (RTD or Saoimage),
when you request to double the zoom
on your image, the software behind ac-
tually performs a pure pixel replication,
which is the same as nearest-neigh-
bour interpolation. While this is very
bad for signal properties, it is accept-
able for a user display since you can
very easily see where artefacts are. If
you need to scale an image by a

non-integer factor e.g. to superimpose
it with another image taken with a
different pixel scale on the sky, you
will need more accurate interpolation
methods.

Correcting an image for detector de-
formations (pincushion or barrel, de-
pending on the orientation) will most
likely require a 2d polynomial of second
degree at least. A true mapping of the
deformation is more easily expressed in
radial co-ordinates and yields compli-
cated deformation formulas. Whatever
the deformation you choose to correct
for, you will end up with a formula that
explains how to compute the one-to-
one correspondence between a pixel in
the deformed image and a pixel in the
corrected image.

Other deformations can easily be im-
plemented if they can be expressed as
a one-to-one relationship between pix-
els in the original image, and pixels in
the deformed (warped) image.

6. Possible Implementations

There are only two ways of imple-
menting a resampling scheme for im-
ages: direct or reverse. The direct way
is going from the original image to
the deformed one, literally spraying
the input pixels onto an output grid.
The reverse way is going from the de-
formed image back to the original one,
computing samples only where they are
needed.

Figure 3: Various interpolation schemes. Top left is nearest neighbour, top right is linear, bot -
tom left is cubic spline and bottom right is hyperbolic tangent.



6.1 Direct warping

Direct warping is taking pixels from
the original image and trying to throw
them onto an output grid that repre-
sents the output, warped image. The
main drawbacks of this method are the
following:

« The output grid needs to keep track
of how many pixels have landed in each
section, to be able to correctly nor-
malise the output value. This can be a
nightmare to implement efficiently.

» There might be some deformations
that will leave holes in the output grid. If
for some reason the output grid is dens-
er than the input one, the risk is to have
so many holes that the output image
does not make sense. To avoid that,
one can oversample the input image to
make it of similar density to the output
image, but then the memory consump-
tion is growing by the same amount.
For large images, this is not a solution.

« If there is no possible assumption
about the way input pixels are thrown
onto the output grid, it is impossible to
guarantee that the output pixels will be
written sequentially. This makes it hard
to optimise /O accesses, and slow
down to the extreme the processing of
large images, even for simple transfor-
mations.

Direct warping is usually considered
too dangerous to implement because of
potential holes in the resulting image,
and because of speed concerns. Image
processing is a domain that needs opti-
misation no matter what the underlying
hardware is. A pixel operation that
needs a millisecond to run will have you
wait more than 17 minutes in front of
your screen if you have to process an
ISAAC image, or 71 hours if you are
processing a VST image.

The best optimisations in the image
processing domain usually reach about
a hundred clock ticks to achieve. On a
modern PC running at 500 MHz, con-
sidering that the image processing soft-
ware is alone running on the CPU, you
will still have to wait 2 seconds per
ISAAC image and 54 seconds per VST
image. And that is for CPU time only, a
bad I/O optimisation forcing the soft-

ware to go to the disk regularly would
multiply these figures by a factor thou-
sand at least.

Direct warping is at the heart of the
“drizzle” method implemented for HST
image reconstruction. Drizzle makes
use of a convolved linear interpolation
scheme that brings more artefacts than
simple linear interpolation. If big images
are involved, or tricky (non-linear) de-
formations, or bad pixels, or large
amounts of noise, this method is likely
to create false information in the output
image. The same is valid for almost all
astronomical image processing pack-
ages: most of them use a linear recon-
struction scheme for default interpola-
tion method.

6.2 Reverse warping

Reverse warping is considering first
the output grid as the image to obtain.
The size of the grid can be determined
by observing the transformation func-
tion between deformed and corrected
image. For example: if the transforma-
tion is a scaling by a factor 2, the output
grid will simply be 2 times bigger than
the input image, containing 4 times
more pixels.

The method is looping over all output
pixels, computes by means of a reverse
transformation which are the contribut-
ing pixels from the original image, ap-
plies an interpolation scheme as de-
scribed above, and writes the result to
the output image.

This has several advantages:

» The output grid cannot have holes,
since all output pixels are reviewed.

» The output grid will be sequentially
visited, allowing to cache the results to
avoid going to disk too often.

« Because of the sequential nature of
the operation (no matter what the trans-
formation is), it is relatively easy to op-
timise the pixel accesses in a generic
way, helping to achieve optimised but
also portable code (i.e. a software that
is fast no matter what the underlying
hardware and OS are).

e The implementation is relatively
easy to write and read, allowing a bet-
ter maintenance.

If you implement a generic inter-
polation kernel scheme that allows
the user to select the kernel to use,
reverse warping becomes an easy
task to implement and allows for
large gains in speed in the resulting
software.

This is the method implemented in
the warping tool offered in the eclipse
package (http://www.eso.org/eclipse/),
and at the heart of the ISAAC imaging
pipeline. The default kernel is the hy-
perbolic tangent mentioned above.

7. Conclusions

Astronomical image resampling is a
complex operation that involves recent
theorems in the field of signal and im-
age processing, together with informa-
tion theory knowledge to be carried out
properly.

No information was given about the
various methods that can be used to
identify the transformation between two
images. This is a complete research
domain in itself, refer to the appro-
priate literature for more information.
The emphasis in this article has been
put on the various methods that can
be used to interpolate pixels in an im-
age, and efficient ways to implement
them.

Usual interpolation schemes are
shown to be insufficient in the usual
noisy astronomical images, adding
aliasing and other various artefacts into
the images. There are more precise
kernels such as the hyperbolic tangent,
that are more suitable for astronomical
image handling. It might also be a good
idea to look into pre-processing filters to
apply to the input images before trying
to re-sample them.

If you care about the quality of your
images whenever you have to apply re-
sampling operations, you should query
your favourite data reduction package
to check out what kind of interpolation
scheme is actually implemented behind
the scenes. Choosing linear interpola-
tion is rarely a good solution in the case
of noisy images.

OTHER ASTRONOMICAL NEWS

Portugal to Accede to ESO (romEso press Release 15/00, 27 June 2000)

The Republic of Portugal will become
the ninth member state of the European
Southern Observatory.

On Tuesday, June 27, during a cere-
mony at the ESO Headquarters in Gar-
ching (Germany), a corresponding Agree-

ment was signed by the Portuguese
Minister of Science and Technology, José
Mariano Gago, and the ESO Director
General, Catherine Cesarsky, in the
presence of other high officials from
Portugal and the ESO member states .

Following subsequent ratification by
the Portuguese Parliament of the ESO
Convention and the associated proto-
cols, it is foreseen that Portugal will
formally join this organisation on Janu-
ary 1, 2001.

51



