Chemistry and kinematics of stars in Local Group galaxies

> Gíuseppina Battaglia ESO Garching

In collaboration with DART

(E.Tolstoy, M.Irwín, A.Helmí, V.Híll, B.Letarte, P.Jablonka, K.Venn, M.Shetrone, N.Arímoto, F.Prímas, A.Kaufer, T. Szeifert, P. François, T.Abel)

Dwarf spheroidal galaxies

Small (half-light radius= 0.1-1kpc), devoid of gas, pressure supported

Motivation

- Galaxy formation on the smallest scales
 - Evolution and distribution of stellar populations
 - Chemical enrichment histories
 - All dSphs contain > 10 Gyr old stars => early universe
- Most dark-matter dominated galaxies
 - Measure dark-matter distribution
 - Constrain the nature of dark-matter (warm, cold...)
- Galaxy formation: building blocks of large galaxies?

DART Large Program at ESO

- 4 dSphs in the MW halo: Sextans, Sculptor, Fornax, Carina (HR only)
- Extended ESO/WFI imaging (CMD)
- VLT/FLAMES Low Resolution (LR) spectra of 100s Red Giant Branch (RGB) stars in CaII triplet (CaT) region over a large area
 vel & [Fe/H]
- VLT/FLAMES High Resolution (HR) spectra (~ 100 stars) in central regions (abundances of many elements)

Outline

1) Sculptor & Fornax: similarities and differences

- Properties of stellar populations from CMD analysis
- Kinematic and metallicity general properties from CaT LR
- 2) Mass determination of the Sculptor dSph

Outline

1) Sculptor & Fornax: similarities and differences

- Properties of stellar populations from CMD analysis
- Kinematic and metallicity general properties from CaT LR
- 2) Mass determination of the Sculptor dSph

BHB: more extended Best fit by Plummer law

RHB: centrally concentrated Best fit by Sersic profile RGB: composite profile (BHB+RHB) provides good fit to data

Intermediate age stars (RC, 3-6 Gyr) less extended and more centrally concentrated than old stars (RHB, >10 Gyr)

Young stars (MS, < 1 Gyr) centrally concentrated with asymmetric distribution (see also Stetson et al.1998)

Summary I

Spatial variations of stellar populations are present both in Scl and Fnx

but for different age ranges

3 CaT lines at ~ 8500Å give:

1) accurate line-of-sight velocities: $\delta v_r \approx 2 \text{ km/s} (\text{S/N} = 20)$

- 2) Calibration between CaT EW and [Fe/H] allows metallicity determination with errors δ [Fe/H] \sim 0.1–0.2 dex
- => [Fe/H] not directly measured

We need to check that CaT-[Fe/H] calibration works

Check: LR(CaT) vs HR(direct) [Fe/H]

- Overlapping stars: 93 in Scl, 36 in Fnx
- Present a trend with metallicity
- Overall comparison good

Calibration also explored using synthetic stellar spectra from Munari et al. (2005)

- Applied S/N, error in velocity, visual inspection criteria
- Probable Membership from simple velocity selection
- # Targets: 1013
- Final sample: 648 stars

1063 944 (in this talk 641 stars)

Chemo-dynamics: Sculptor

Chemo-dynamics: Fornax

Summary II On the evolution of Scl and Fnx: similarities

- MP/older stars are spatially extended; MR/younger stars are more centrally concentrated =>Removal of Gas/metals from the outer regions
- Different kinematics for different metallicity components in both Scl and Fnx
 => due to readjustment of the location where star formation took place?

Summary II On the evolution of Scl and Fnx: differences Scl Fnx

(Formed stars until 10 Gyr ago)

- MP stars dominant (70%)
 =>First phase of SF more intense
- (Formed stars until 200 Myr ago)
- Intermediate age (3-6 Gyr old)/MR stars (57%) dominant => first phase of SF not very intense

- Efficient removal of gas/metals on a short time scale
- Slower removal of gas/metals

If Scl is less massive than Fnx supernovae explosions, ram pressure, tides might be more efficient

Outline

1) Sculptor & Fornax: similarities and differences

- Properties of stellar populations from CMD analysis
- Kinematic and metallicity general properties from CaT LR
- 2) Mass determination of the Sculptor dSph

Determination of the Sculptor mass content and distribution

• Importance:

mass might drive star formation and chemical enrichment processes; useful to test different DM theories

• Method:

observed l.o.s. velocity dispersion profiles for MR and MP stars are compared to predictions from different DM models (using Jeans equation)

System must be in equilibrium!

(tidal disruption could inflate measured dispersion)

We do not find signs of tidal disruption in Sculptor

Predicted velocity dispersion from Jeans equation For stationary and spherically symmetric systems

 $\sigma_{\rm los}^2 = \frac{2}{\Sigma_*(R)} \int_R^\infty V_c^2(y) y^{2\beta-1} \rho_*(y) H(y) dy$

Line of sight velocity dispersion depends on:

•Spatial distribution of tracer population, $\Sigma_*(R)$, $ho_*(r)$

•Velocity anisotropy of tracer population, $\beta(r) = 1 - \frac{\sigma_{ heta}^2}{2}$

•Total potential, $V_c^2(r)$ or $\phi(r)$

Ingredients in the modeling

- Tracer:
 - Two components => MR and MP RGB stars, separately
- Tracer spatial distribution from WFI photometry

- i_{0}^{0}
- Two components => centrally concentrated Sersic (MR) & extended Plummer (MP) profiles
- Velocity anisotropy, β
 - constant
 - varying with radius as in Osipkov-Merritt $\beta(r) = r_a^2/(r^2 + r_a^2)$ (isotropic in the centre, radial in the outskirts)
- Dark matter mass model
 - CORED = Pseudo-Isothermal sphere: $\rho(r) = \rho_0 r_c^2/(r^2 + r_c^2)$
 - CUSPY = NFW: $\rho(r) = \rho_0 / [r/r_s (1 + r/r_s)^2]$
- Best fit model obtained by minimizing $\chi^2_{MR} + \chi^2_{MP}$ (2 comp.)
- Beware of degeneracies, e.g. mass profile-anisotropy

Two components: ß constant

MR

MP

One component modeling: not possible to distinguish between DM profiles

ISO

NFW

Results: modeling

- Two-components modeling helps relieving some degeneracies (useful to apply to other galaxies)
- ß Osipkov-Merrit models give very good fit:
 - Iso large core radius (0.5 kpc): excellent fit. $M(\langle r_{last}) = 3.4 \pm 0.7 \times 10^8 M_{sun}$

- Mass within last point well constrained (1 order of magnitude larger than previous measurements)
- M/L = 158 \pm 33 (M/L)_o within 1.8 kpc

Some future prospects/plans

 How common multiple stellar components are? (e.g. not present in the Sextans & Carina dSphs...)

- Extend similar observations to other dSphs

- Models needed to understand why multiple stellar populations form (or do not), and possible role of environment

• Detailed mass determination of dSphs

- Two-components modeling to be applied to other dSphs (next in line: Fornax dSph)

Some future prospects/plans: The Local Group morphology-density relation

(as from Mayer et al. 2001, 2006 models)

If dIrrs transformed into dSphs:

- Common chemical properties between the ancient population of dIrrs and dSphs => CaT surveys of dIrrs
- Presence of objects with intermediate properties (e.g. bars, rotation....) => extended kinematical surveys hopefully combined with better proper motion measurements