RTC4A06

MICADO SCAORTC:
BUILDING THE ELT FIRST LIGHT RTC

Florian Ferreira
On behalf of the MICADO SCAO RTC Team

SUMMARY

e MICADO SCAO RTC Design overview

e Prototyping activities
e H-RTC development status
e RTC Tk integration
® On-bench activities

MicADO

e Status after FDR #4 (from FDR board report):

« The review of the final design can be considered complete for the majority of
the MICADO sub-systems, with no showstoppers over the design but a few
actions, most of them being considered “normal work” and a few being critical

ones »

e Agreement from FDR board and ESO to start procurement and
manufacturing

MICADO SCHEDULE

e Received on 22/09 We are here

e Configuration close to final H-RTC:

® 1x AMD EPYC 9374F (32 cores @ 3.85 GHz)
® 1x GPU NVIDIA A100
® 1x Mellanox ConnectX-6

e Integrated into existing MICADO/SPHERE+ prototyping cluster

RTC DESIGN OVERVIEW

COSMIC RTC Tk

e ELT Standard implementation
e COSMIC-based H-RTC

e ESO RTC Toolkit based S-RTC

H-RTCOVERVIEW

e COSMIC with
GPU-based AO
pipeline

e GPUDirect RTMS
acquisition

e MUDPI Telemetry
publishers

H-RTC PERFORMANCE

e Emulator mode @ 500 Hz (H-RTC producing ramp images)
e 4,868 modes and 24,416 pixels (PWFS full-pixels algorithm), full pipeline

e Measurement of the H-RTC computation time from image availability to
commands computed

e H-RTC server under ELT devEnv 4 (Fedora 34) with 2x NVIDIA A100

USEFUL REAL-TIME METRICS

e Mean latency: mean of the measured execution time (as defined just before)
e Worst-Case Execution Time (WCET): self-explenatory...
e Best-Case Execution Time (BCET): again, you got it...

e Mean jitter: mean of the execution time deviation (wrt to the mean latency)
- i.e. standard deviation of the measured execution time

e Maximum jitter: maximum deviation from the mean execution time
- i.e. WCET — mean latency

e Peak-to-Peak jitter: difference between WCET and BCET

H-RTC PERFORMANCE

Specs:
o lat. <305 pus

o Max. jitter < 10% mean lat.
Mean latency ~257 us
WCET ~283 ps
Average jitter ~5us
Max. jitter ~25 us (~10% lat.)

~2 TB/s of sustained memory bandwidth

60% of max. measured memory bandwidth (1.6
TB/s per GPU)

Trade-off toward maintainability: standard
implementation only, no custom CUDA kernels

H-RTC PROTOTYPING

H-RTC PERFORMANCE

e GPUDirect acquistion mean latency between sent of first packet and
receival of the last packets: ~14 ys, max. 42 ys

S-RTCOVERVIEW

e Based on ESO RTC Toolkit
e ...but leveraging in-house S-RTC python-based software
e 4 physical nodes, aligned with ESO RTC Tk reference design:

o H-RTC Gateway: hosting Telemetry Republishers (MUDPI - DDS) and H-RTC
Supervisors

o S-RTC Gateway: hosting the RTC supervisor and main connection point with AOCS
o Storage node: hosting Telemetry Recorders

o Compute node: hosting Data Tasks

e Design includes :
o 12 telemetry topics
o 33 Data Tasks

o 12 H-RTC supervisors
e 2 setups for development: full-scale simulation & bench

11

DATA TASK

e Baseline is to use Python code + pybind11 interpreter
o Allows easy re-use of existing in-house S-RTC algorithm

o Allows continuous development & integration along in-house S-RTC software

e AO team easily develops and tests algorithms...

e ...which are easily integrated into a Data Task

12

S-RTCOVERVIEW

H-RTC/S-RTCCOMMAND INTERFACE

e H-RTC Supervisors will rely on COSMIC's Tides software

e Based on ZMQ request/reply + data serialization

13

S-RTCPROTOTYPING

RTCTOOLKITINTEGRATION

e Prototyping activities full scale
setup:

o 1x WFS simulator (ESO for full-
speed, or COMPASS for AO

performance)
o 1xH-RTC
o 4x S-RTC Nodes

o 10 Gbe switch for interconnect
e On-bench setup:

o 1xH-RTC
o 1x S-RTC Node

o 1x Workstation
e Allow parallel development wrt to

on-bench activities

HRTC Node

14

S-RTCPROTOTYPING

RTCTOOLKITINTEGRATION: DEPLOYMENT VIEW

15

S-RTCPROTOTYPING

16

SESAME BENCH

e 633 nm laser point source
e 102x102 pyramid WFS

e 28,320 valid pixels

e 3,228 actuators ALPAO DM
e Tip-tilt mirror

e Pyramid modulation mirror

e PSF camera

17

EEEEEEEEEEE

SESAME BENCH: DEPLOYMENT VIEW

H-RTC (poseidon)

H-RTC (poseidon)

Kraken } -<_ Kraken }

Y

Marlin pipeline } .: Marlin pipeline J
MUDPI m_ MUDPI
S-RTC (acharya)

i A !
Y

{ Telemetry } { RTC Tk }
Gateway
RTC Tk Supervisor
Telemetry Gateway + Commands gateway
Workstation (zinzolin) 1| Pyro4
ADOPT
S-RTC ADOPT

Grafana * 0
camServer

Bench status E_ } Grafana
———— camServer

A ‘
JT Bench status
" | web streaming | | RTD

- videa [SLM { LabView] i) I} web streaming
L Server J Gateway Video SLM LabView
Gateway
Modulation } [Sources } .‘ —{ Modulation } [Sources }

T

T

UDP Pyro4

|

| |

i Python LabView '

Python } [LabView } uoP | -[H } I

- [. RTCTk | |
e i {RTprocess} Web services !

m [RTprocess} Web services SHM | |
1 |

| I

| |

SESAME BENCH RTC

2x 10-cores Intel Xeon E5-2630

2x NVIDIA Quadro RTX 8000
+ NVIink bridge

1x Dual port ConnectX-6 Dx

And a lot of noise...

The AO team:

ON-BENCH ACTIVITIES

SESAME BENCH RTC

PR We messed up a bit the ceiling while

passing the fibers...

/ So it ended up there

The AO Team after the rearrangement

ON-BENCH ACTIVITIES

SESAME BENCH: LET’S CLOSE THE LOOP!

ON-BENCH ACTIVITIES

SESAME BENCH: LET’S CLOSE THE LOOP AGAIN!

WHAT IFYOU FORGOT TO SHUTDOWN THE BENCH ?

PID pname state C# tstart sess loopcnt Descr

8897887 MarlinContainer_telemetry RUN 89:83:31. krakenContainer_ 8173688972
08897829 MarlinConfigDaemon_teleme INIT C1 09:83:29. krakenContainer_ 6800008088
8897187 MarlinContainer_reconstru RUN 89:83:27. krakenContainer_ 8173888972

8896443 MarlinBU_kacou RUN 89:83:23. krakenBusiness_k 8173888972
8896365 MarlinConfigDaemon_kacou INIT 89:83:22. krakenBusiness_k 0080000000
0895717 MarlinBU_acquisitionReord :83:20. krakenBusiness_a ©173088987

I
I
I
8897128 MarlinConfigDaemon_recons INIT C1 09:83:25. krakenContainer_. 0000006000 |
I
I
I
88956U8 MarlinConfigDaemon_acquis :03:18. krakenBusiness_a 0000000000 |

e 173M frames @ 500 Hz - 4 days run! (Yes, it was a long week-end...)
e 15 frames lost = 0.0000087 % loss

e Hopefully, AO Team said it was barely acceptable...

CONCLUSION & FUTURE WORKS

e H-RTC development is well advanced: already on bench
o Performance on specs
o Reliable

o Maintainable
e Current activities mainly focused on S-RTC: RTC Tk integration & testing

e Next steps:
o Logging strategy for H-RTC: ClII integration ?
o Continue developing RTC Tk components

o Development on simulation setup & Testing on bench

	Slide 1: Rtc4ao 6 MICADO SCAO RTC: building the elt first light rtc
	Slide 2: summary
	Slide 3: Micado
	Slide 4: Micado schedule
	Slide 5: Rtc design overview
	Slide 6: H-rtc overview
	Slide 7: H-rtc performance
	Slide 8: Useful real-time metrics
	Slide 9: H-rtc performance
	Slide 10: H-rtc performance
	Slide 11: S-RTC overview
	Slide 12: Data Task
	Slide 13: H-RTC / S-RTC command interface
	Slide 14: RTC Toolkit integration
	Slide 15: RTC Toolkit integration: deployment view
	Slide 16
	Slide 17: Sesame bench
	Slide 18: Sesame bench
	Slide 19: Sesame bench: deployment view
	Slide 20: Sesame bench rtc
	Slide 21: Sesame bench rtc
	Slide 22: Sesame bench: let’s close the loop !
	Slide 23: Sesame bench: let’s close the loop again !
	Slide 24: What if you forgot to shutdown the bench ?
	Slide 25: Conclusion & future works

