COSMIC SRTC : review and future plans RTC4AO 6, ESO Garching

Nicolas Doucet

7 Nov 2023

SHIPS in COSMIC

- Part of MAVIS
- Supervisor module with HIgh Performance Software

- Tackles compute intensive tasks in the SRTC
- Use of accelerators

Composition of SHIPS:

- C++ / CUDA / OpenMP
- Data tasks core:
 - Input / Output
 - Linear Algebra
 - Specific needs
- ESO RTC Toolkit:
 - Wrap and expose the data tasks
 - Handles telemetry
- ICS gateway
- HRTC gateway

- IO
 - Command line
 - FITS
 - json

- LA: provides a uniform interface to linear algebra libraries
 - Hardware selection
 - Management of matrices
 - LAPACK, cuBLAS
 - Possibly more advanced libraries to enhance performance (Chameleon)
 - Not required for MAVIS
 - Problem of the licencing (LGPL)

- Common: common to data task
 - Phase structure function
 - Instrument modelisation :
 - WFS: position of the subapertures, pointing direction
 - DM: position of the actuators, influence functions
 - Atmospheric profile

- Specific data tasks to which IO,LA and common are available:
 - Apply: nothing more required
 - Learn : also need specific kernels : score function, derivatives

- Python interface with pybind11
 - LA, common and data tasks
 - No computation involved
- Interface with COMPASS
 - Creates input data required

Three different uses

- In a standalone program
- As Python module
- As external library for the RTC tk

What does it do currently:

- Data tasks covariance matrix generation, Learn and Apply
 - MMSE and PLAA
 - GLAO, LTAO, MCAO, MOAO
- MAVIS scale test case
 - 8 WFSs, 19k measurements
 - 3 DMs, 1k actuators
 - 5 atmospheric layers
 - Hardware:
 - CPU : Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz, 30 cores
 - GPU: Nvidia V100

Table 1: Task execution time in second

task / hardware	CPU	GPU
Learn 10 parameters	2143.6	38.50
Apply 25 TS	193.2	2.1

What does it do currently:

- Apply Benchmark
 - Nvidia V100
 - 10 atmospheric layers

Execution time float32

Execution time float64

What does it do currently:

- Simulation with COMPASS:
 - Generates WFSs and DMs data
 - Runs SHIPS data tasks
 - Closes the COMPASS loop with SHIPS command matrix
- ESO RTC Tk:
 - SHIPS can be installed on ELT Linux Development Environment
 - No GPU platform tested yet
 - Data tasks running in a file based configuration
 - Test pipeline from Telemetry Republisher to SHM reader
 - Timeout issues

Ongoing and future work:

- Data task:
 - Stochastic learn ([1] Y.Hong et al. 2021 https://doi.org/10.1007/978-3-030-85665-6_35)
 - LQG ([2] J. Cranney et al. AO4ELT 2019)
 - Other data tasks
- ESO RTC Tk:
 - Moving out of the file based to use the consul/nomad
 - Computation of a covariance matrix of slope for L&A
 - A good pretext to progress on the the interaction with the HRTC gateway
- ICS gateway
- Outsmarting the Atmospheric Turbulence for Ground-Based Telescopes Using the Stochastic Levenberg-Marquardt Method
- ② Document details Zonal multi-layer predictive control for multi-conjugate adaptive optics: Mavis simulations

Thank You.

