
RTC4AO, 2023-11-06, ESO Garching slide 1 of 28

HRTCp:
ELT-sized Hard Real Time Core on common-off-the-shelf hardware

Poul-Henning Kamp
FreeBSD.org

Niels Hald Pedersen
FORCE Technology

RTC4AO, 2023-11-06, ESO Garching slide 2 of 28

HRTCp in terms of 17 computers and 10 VLANs

RTC4AO, 2023-11-06, ESO Garching slide 3 of 28

HRTCp: Timing diagram

RTC4AO, 2023-11-06, ESO Garching slide 4 of 28

Bleeding (Power)Edge 2018: Dell R7425, dual AMD Epyc 7501:

● 64 Zen-1 2.2 GHz cores,
cache: 128M L3, 64 x (512K L2, 64K L1i, 32K L1d) on 8 NUMA nodes,

● 16 DDR4 2667 MHz busses (2 each NUMA node)
=> 341.3 GB/s teoretical BW

● 128 GB RAM (as 16 x 8)

● 4 x 10 GB Ethernet

RTC4AO, 2023-11-06, ESO Garching slide 5 of 28

The goal of a prototype is to measure the known unknowns and find the unknown unknows

Make measurement and “what if?” experiments possible, and preferably quick and easy

Modularity – To know what you are measuring and for “what if?” experiments

Observability – access to internal state/ad-hoc measurement without side-effects

Tweakability - everything is a parameter, real-time tweaking, robustness

Write production quality code from the start

Saves a LOT of debugging time

The least heeded wisdom in Software Engineering: Always throw the prototype out
- Frederick P. Brooks: The Mythical Man-Month
(Read it!)

Software & Systems design for prototyping

RTC4AO, 2023-11-06, ESO Garching slide 6 of 28

Amazing hardware (CPU, vector-math, network, RAM)

Preparing the “platform”

As little software as possible – always a good & general principle
Eliminate as many (potential) sources of jitter as possible – unknown unknows
Time-synchronization – to be able to measure what we want to know
Statically linked binaries – reduce randomness in cache-line footprint.

Exploiting the “platform”

Nailing things firmly down – mostly threads to CPU cores
Tightly choreographed network traffic – avoiding contention & collisions
-//- in RAM & between CPUs – cache effects, CPU interconnects
Code generation from high-level model of the system
Maximize freedom to experiment – It’s a prototype

The important bits for timing

RTC4AO, 2023-11-06, ESO Garching slide 7 of 28

OS services required: Not wanted:
Pluggable devices

Start programs and threads Graphics
Allocate memory Online help
Thread synchronization primitives Browser
Take timestamp Cryptography
Send packet TimeZones
Receive packet (with RX-timestamp) UniCode

Containers
Nice to have: HTML

Console connection (for running ps, top etc.) JavaScript
TCP connections for OaM Screen Savers

Kubernetes
Necessary to maximize HW performance Internationalization

WLAN
Lock thread/memory to specific CPU FireWall
Steer network interrupts to specific CPU Accounting

[…]

Linux as a “hardware abstraction layer”

RTC4AO, 2023-11-06, ESO Garching slide 8 of 28

Linux startup:

Bootloader finds two files: “kernel” and “initramfs”

Loads them into RAM

Jumps to kernel, tells it where to find initramfs

Kernel initializes

Kernel mounts initramfs as root filesystem

Kernel executes /sbin/init from initramfs

/sbin/init is SystemD

(abandon all hope ye who enters here)

set -x

export PATH=$PATH:/usr/sbin

mknod -m 644 /dev/random c 1 8
mknod -m 644 /dev/urandom c 1 9
mount -t proc /proc /proc
mount -t sysfs none /sys

This list depends on the precise server hardware
/usr/sbin/modprobe -v tg3
/usr/sbin/modprobe -v bnx2
/usr/sbin/modprobe -v ixgbe
/usr/sbin/modprobe -v i40e

Give drivers a moment
sleep 2

if [-f /usr/bin/python] ; then
 # Centos 7.4-6
 export PYTHON=/usr/bin/python
else
 # Centos 8.0
 export PYTHON=/usr/libexec/platform-python
fi

${PYTHON} \
 /network_config.py configure > /_netconf && bash -x /_netconf

/domus &
exec /bin/bash --login

SystemDectomy

RTC4AO, 2023-11-06, ESO Garching slide 9 of 28

CONTROL is the only “normal” Linux computer in the cluster

Boots from local disk, ssh access, compilers, source code, email, cron, …
Does not participate in the choreographed traffic

Acts as network boot-server for the rest of the cluster

Runs the “CONTROL” program (377 lines of code)

Launches, configures, controls & monitors programs on real-time nodes

Text-based Command Line Protocol (“CLI”) used throughout.

All RT programs have CLI interface reachable through CONTROL’s CLI

Easy to implement and execute ad-hoc experiments:

backend cmdpll dejitter 40

System startup & CONTROL

RTC4AO, 2023-11-06, ESO Garching slide 10 of 28

Boots via network (UEFI standard supported by BIOS)

/sbin/init script starts “DOMUS” which:

Listens for TCP connection from CONTROL

Executes CLI commands from CONTROL

Receive file

Transmit file

Launch (a single) RT-program

Pass CLI traffic between CONTROL and RT-program

Real time nodes

RTC4AO, 2023-11-06, ESO Garching slide 11 of 28

2223 PACER – Timekeeping, choreography, reporting
4445 FRONTEND[N]a – Big “forward” MVM math
1854 FRONTEND[N]b – Big “backwards” MVM math
3059 BACKEND – “minor” math, filters, mirror split etc.

324 WFS – WFS sensor simulator
181 MIRROR – MIRROR simulator
632 RECORD – Can capture any traffic in system to FITS file(s)

5458 Include files
12315 Library functions
7671 Python data model of all “NetVar” in cluster

38152 Subtotal

45627 Python generated NetVar Alloc+Tx+Rx+RTMS+MUDPI+Timestamping code

83779 Total (Comparison: /bin/bash is 168330 LOC)

Lines of code expended:

RTC4AO, 2023-11-06, ESO Garching slide 12 of 28

Choreographed Network Communication (No dogs allowed on this playing field)

Work cycle starts with first WFS[0] Packet (= rate controlled by WFS)

Every WS:

PACER sends TICKTOCK
UTC timestamp
Parameter orders

RT-nodes send TOCKTICK
Parameter confirmation
Stats, states, timing

All NetVar’s have assigned
Tx time(-slot)

PACER xmits parameter updates
in defined holes between science
data xmissions.

RTC4AO, 2023-11-06, ESO Garching slide 13 of 28

Reports TX0 timestamp for all NetVar transmissions, RX0, RXN for all receptions

Also multicast, so other
programs can listen in with
zero impact.

Plot from development,
showing parameter update
transmission interfering with
science data timeslot

TICKTOCK/TOCKTICK

RTC4AO, 2023-11-06, ESO Garching slide 14 of 28

Safe: Huge MVM’s/fast math have large overlap with traditional supercomputing

Safe: Microsecond timing has overlap with very profitable “fast trading” market segment

Safe: What we want from the linux kernel is minimal and totally uncontroversial

Mitigated Risk: Linux userland, and SystemD goals and direction is totally different

Available fallbacks:
ARM CPUs – Harder to get, except Apple, which have astonishing performance
FreeBSD OS – Does (almost) everything Linux does, but boringly.

Interesting question:
MTBF of 3nm semiconductors in cosmic rays at 3km altitude

Reflections on trusting Intel, AMD and Linus but not Lennart

RTC4AO, 2023-11-06, ESO Garching slide 15 of 28

A highly NUMA platform: Dell R7425, dual AMD Epyc 7501

● 64 Zen-1 2.2 GHz cores,
cache: 128M L3, 64 x (512K L2, 64K L1i, 32K L1d) on 8 NUMA nodes,

● 16 DDR4 2667 MHz busses (2 each NUMA node)
=> 341.3 GB/s teoretical BW

● 128 GB RAM (as 16 x 8)

● 4 x 10 GB Ethernet

RTC4AO, 2023-11-06, ESO Garching slide 16 of 28

A highly NUMA platform: R7425 The NUMA topology

Taking the liberty of interpreting “von Neumann machine”
as something with a single memory space, but possibly
more than one hardware thread of execution, we may state:

This is not exactly a von Neumann machine.

It is more like 8 (16?) von Neumann machines,
connected with 40GB-ish network segments (16 hereof),
simulating being a single von Neuman machine.

Each Zen-1 die (“Zeppelin”)
holds two core complexes
each with 4 cores and 8 MB L3 cache

RTC4AO, 2023-11-06, ESO Garching slide 17 of 28

Latency ping-pong (practical latency mapping)
Dell PowerEdge R7425
2 x AMD Epyc 7501: 64 Zen gen.1 cores, 128 MB L3
8 NUMA nodes

Each side of the 64 x 64 pix graphic represents cores 0-63.
Each of the 4032 non-green pixels thus represents a pair of two
cores and the colour code the middle latency, when these two
play a game of latency-pingpong:

Each core hotspins on a variable local to its own NUMA domain.
When it sees the value having been incremented by its opponent
core, it will increment this cores local variable and note the time.
Repeat 10000 times, compute average roundtrip latency.

White
Light blue
 Just blue
Dark blue

Blackish blue

100 ns, same CCX (same L3)
340 ns, same Zeppelin, other CCX
560 ns, same socket, other Zeppelin
840 ns, other socket, shortest InFab path
950+ ns, other socket, longer path

RTC4AO, 2023-11-06, ESO Garching slide 18 of 28

NUMA/cache/BW-driven Ground Rules
A real time node is dedicated to a single task. You should own it.

Prepare the platform for real time use:
ISOLCPU 1-63 and friends, interrupt routing, no SMP, move kernel tasks...

do {

Analyze the application:
Data storage, reads and writes.
Computational requirements. Cache hits necessary?

[Re]Design the application (core-ography):
Pin all threads to a specific core
Evaluate the effect of reads on content of shared cache
Consider memory BW

Test achieved timing/performance (RDTSC is your friend)
Consider integrating a nanosec-granular test infrastructure.

} while (!sufficient);

RTC4AO, 2023-11-06, ESO Garching slide 19 of 28

Frontend A: Real time programming a NUMA platform

RTC4AO, 2023-11-06, ESO Garching slide 20 of 28

Frontend A: Sensor image processing

RTC4AO, 2023-11-06, ESO Garching slide 21 of 28

Cache planning: Calibrate, Centroids, Move

(32 additional MVM worker cores in 4 NUMA nodes following...)

Incoming raw sensor data lives here,
node 0 memory

In NUMA node 1, core 8, the
calibrator thread lives, computing
the calibrated sensor image.

In node 1 DDR memory, its coefficients
(5 MB) are stored and in principle
read every cycle. As L3 cache is 8 MB,
this lead to a very high cache hit rate.

Likewise, the centroid thread keeps
its coefficients (3 MB) mostly in the
other half of the node 1 L3 cache.

RTC4AO, 2023-11-06, ESO Garching slide 22 of 28

Frontend A: Tomographic reconstruction, and back...

x,y: 116.6 MFLOPS/cycle
(these two constitutes 99% of total work)

for this reason, x is located in WFSB.

y

x

RTC4AO, 2023-11-06, ESO Garching slide 23 of 28

Pipeline order:

simultaneous
reading
fronts

Data is read out of the CCD in an nontrivial
order given by sensor, and described
by suitable maps, available at runtime.

From these maps can be computed the order
of which subapertures become complete.

This, the pipeline order, is used in computing the
tomographic reconstruction MVM.

This implies that matrix coefficients should be
scrambled to pipeline order at installation,
and MVM result should be unscrambled to
user order afterwards.

RTC4AO, 2023-11-06, ESO Garching slide 24 of 28

Frontend A: The MVM bucket brigade

Sensor data packet X arrives with its payload of sensor data. Then:

1) calibrator thread looks up which pixels came with particular packet X,
applies dark field/flat field correction to these pixels, converting to user order in the process,
and signals to thread centroid that this is done.

2) centroid thread looks up which subapertures can now be computed, does this,
converting to pipeline order in the process,
and signals to thread mover that this is done.

3) mover thread sees whether there are enough new slope values to bother MVM workers with that.
If so, the new values are copied to a node-local copy of the slope vector on nodes 2-7.
After this, a likewise node-local counter stating the validity of the local slope vector is updated.
No one is signalled.

Meanwhile, and asynchronous to the above, each of the 48 MVM workers hotspins on their
local copy of the validity variable; when this changes (from above actions), the worker computes
the corresponding slice of the MVM.

RTC4AO, 2023-11-06, ESO Garching slide 25 of 28

Frontend A: The MVM bucket brigade II

(32 additional MVM worker cores in 4 NUMA nodes following...)

signal
read
write

RTC4AO, 2023-11-06, ESO Garching slide 26 of 28

Results: (early) Timing details from Frontend A big MVM

Last packet signalled from pacer thread

calibrator thread processing done

Centroid thread
processing done Mover thread

processing done

All 56 MVM threads
processing done,
result on node 0

These are early stage
results, using a configuration
with 56 cores / 7 NUMA-nodes
allocated to doing the MVM.

Graph show the time interval
1390 to 1470 microseconds
from arrival of first WFS packet.

We see the winding up of the
bucket brigade after last packet:
first calibrator,
then centroid,
then mover
and at last the MVM workers.

RTC4AO, 2023-11-06, ESO Garching slide 27 of 28

Results: Latency distribution from performance test

12-hour test as per req. 374:

● Disturbances (mirrors, slopes)
continuously

● Dark/scale maps, centroid matrices, etc
updated every 10 sec (as per req.).

● Big matrices (R,M) updated every 30 sec
(NB: 10 times the req).

1500000 cycles (50 min)

Note logarithmic y-axis These 19 outliers,
approx. 160 microsecs late,
was difficult to reproduce later
and has never been explained.

RTC4AO, 2023-11-06, ESO Garching slide 28 of 28

Thank you for listening...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

