O-lab team @ philab.philesa.int pierre.philippe.mathieu@esa.int

Sentinel-1 as seen by Artificial Intelligence

The Rise of Alfor Earth Observation

The AI Renaissance —> The Rise of AI4EO

Tool for Vision

- Detection, Classification (ConvNet)
- Self-supervised Learning
- Super-resolution

Tool for Discovery

- Earth System Modelling Data Science
- Digital Twin Earth (DTE)
- Physics-Informed Neural Net (PINNs)
- Tool for Operations
 - Spacecraft Health & Safety
 - Time Series analysis (anomaly detection)
 - Mars Express energy management

ESA UNCLASSIFIED - For Official Use

Tools for Enabling Communities

- **AI Pipeline Management**
- **Data-centric AI Challenge with OPS-SAT**
- MLOPS for rapid flood detection

Tools for Intelligence in Orbit

- Edge Computing & phi-sat
- **Cognitive Cloud Computing**

Concluding Remarks

Al Renaissance, Challenges & Opportunities

*

Research Agenda

Al everywhere!

Image Processing, Classification, Recognition, Inpainting, ESA UNCLASSIFIED - For Official Use

CMON (ISS)

Digital Assistant (NLP)

Quality Assurance

Gaming

Computer vision & Autonomy

*

Autonomous Driving

What is Al?

Artificial Intelligence (AI) Machine Learning (ML) Automatic Reasoning

ESA UNCLASSIFIED - For Official Use

European Space Agency

Automation of Computer Programming (Software 2.0)

ESA UNCLASSIFIED - For Official Use

European Space Agency

6

Towards adaptative AI pipeline

Our Main Focus here

Machine Learning (ML)

Augmented Intelligence (AI) Human in the Loop (Crowdsourcing)

ESA UNCLASSIFIED - For Official Use

8

Apollo 17, 1972

Taking the Pulse of our Planet

Global Data to address Global Challenges

e.g. climate change, sustainable development and use of resources

always on

Multi-Sensors EO Landscape - System of Systems

Addressing diverse Sensing

Eruption in La Palma (Canary islands, Spain) Eruption started on 19 September 2021

Sentinel-1 interferogram (14-20 Sep) [courtesy Pablo J. González]

Copyright: Contains modified Copernicus Sentinel data (2021)

First lava map produced by **Copernicus Emergency** Management Service

Based on **Sentinel-1 Cosmo-Skymed** data

Sentinel-5P (SO2, 20 September)

AI4EO = the perfect Match

PLANETARY HEALTH

Action

Observation

Quantify Understand

Mode

Prediction

Enhanced Observation

Informed Action

Better Model

More Accurate Prediction

Splitting a Big Prob into Small Probs

- * Optimise sampling
- * Understand Patterns
- * Infer Causes

Action

* **Decision** Support * Assess Impact

Observation

* Classify * Quantify * Understand

Mode

Preciction

- * Accelerate Simulations * Emulate
- * Parameterize

Quantifying Risk & Impact of Floods

ESA UNCLASSIFIED - For Official Use

European Space Agency

OIL SPILL

VOLCANOES

FLOODS

Methodology: Detecting change

ESA UNCLASSIFIED - For Official Use

Can you spot change?

https://medium.com/radiant-earth-insights/stac-updates-fall-2021-ac97e66edb48

https://github.com/FrontierDevelopmentLab/sat-extractor

self-supervised semantic information

Radiant Earth Insights Earth Imagery for Impact

SatExtractor — One of my favorite projects to emerge recently is SatExtractor, which is a real cloud-native approach to grabbing diverse public imagery and making it more accessible. The cool thing to me is that this project is much more about solving a problem: it is 'difficult to create datasets to train models quickly and reliably.' STAC is a key enabling technology, but it's not another tool to use or serve STAC, it's a tool to ' perform worldwide datasets extractions using serverless providers such as Google Cloud Platform or AWS'. I suspect we're going to soon see more projects that show real innovation on top of the foundation STAC provides.

Data Augmentation - Active Learning

Sentinel-2 image

• See more at: <u>https://kappazeta.ee/cloudcomparison</u> X A P A Z Z T A

Adressing the long tail! Generalisation is in extreme case ESA UNCLASSIFIED - For Official Use

Sen2cor (rule based)

Water misclassified as cloud shadow

Small fragmented clouds undetected

Legend: Yellow – cloud Green – cloud shadow

*

Supervised Learning (ConvNet)

Automatic Arctic Sea Ice Charting Credit: Andreas Stokholm, Andrzej Kucik, Nicolas Longépé

ESA UNCLASSIFIED - For Official Use

Technical University of Denmark

- Investigate approaches to overcome ambiguous SAR signatures
- Automatically produce multiparameter charts
- Map sea ice automatically from satellite imagery for use in operational maritime navigation

- |+|

Danish Meteorological Institute

+

Graph Neural Networks for Climate Change

Hybrid Quantum Machine Learning (QML¢sa

ESA UNCLASSIFIED - For Official Use

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

On Circuit-Based Hybrid Quantum Neural Networks for Remote Sensing Imagery Classification

Alessandro Sebastianelli¹⁰, Student Member, IEEE, Daniela Alessandra Zaidenberg, Student Member, IEEE, Dario Spiller, Member, IEEE, Bertrand Le Saux ^(D), Member, IEEE, and Silvia Liberata Ullo ^(D), Senior Member, IEEE

Abstract-This article aims to investigate how circuit-based hybrid quantum convolutional neural networks (QCNNs) can be successfully employed as image classifiers in the context of remote sensing. The hybrid QCNNs enrich the classical architecture of convolutional neural networks by introducing a quantum layer within a standard neural network. The novel QCNN proposed in this work is applied to the land-use and land-cover classification, chosen as an Earth observation (EO) use case, and tested on the EuroSAT dataset used as the reference benchmark. The results of the multiclass classification prove the effectiveness of the presented approach by demonstrating that the QCNN performances are higher than the classical counterparts. Moreover, investigation of various quantum circuits shows that the ones exploiting quantum entanglement achieve the best classification scores. This study underlines the potentialities of applying quantum computing to an EO case study and provides the theoretical and experimental background for future investigations.

Index Terms-Earth observation (EO), image classification, land-use and land-cover (LULC) classification, machine learning (ML), quantum computing (QC), quantum machine learning (QML), remote sensing.

methodologies have also progressed to accommodate larger and higher resolution datasets. Image classification techniques are constantly being improved to keep up with the ever expanding stream of Big Data, and as a consequence, artificial intelligence (AI) techniques are becoming increasingly necessary tools [5], [6].

Given the need to help expand the processing techniques to deal with these high-resolution Big Data, EO is now looking toward new and innovative computation technologies [7]. This is where quantum computing (QC) will play a fundamental role [8]. Today, there is a number of differing quantum devices, such as programmable superconducting processors [9], quantum annealers [10], and photonic quantum computers [11]. However, QC still presents some technological limitations, as reported in [12] with a special concern with noise and limited error correction. Specific algorithms, namely, the noisy intermediate-scale quantum (NISQ) computing algorithms, have been designed to tackle these issues [13].

Community Challenges

ESA UNCLASSIFIED - For Official Use

ai4eo.eu

KP Labs data set from airborne survey on soil properties with hyper spectral sensing

•

(eesa

European Space Agency

SciML

ESA UNCLASSIFIED - For Officia

NATURE | NEWS FEATURE

Can we open the black box of AI?

Artificial intelligence is everywhere. But before scientists trust it, they first need understand how machines learn.

*

Davide Castelvecchi

Earth System Data Lab

ESA UNCLASSIFIED - For Official Use

https://www.earthsystemdatalab.net

ESA UNCLASSIFIED - For Official Use

Fast Emulator / Surrogates for Obs Operators

(retrievals, atm correct, benchmarking)

Atmospheric correction (centre part) of Sentinel-2 data over China with very high aerosol loading

Ε

Emulators (Surrogate Models)

TOA radiance

Emulator Global Forecast (precip)

https://ai4earthscience.github.io/neurips-2020-workshop/papers/ai4earth_neurips_2020_19.pdf

ESA UNCLASSIFIED - For Official Use

European Space Agency

Quantifying health-risk with EO data and Al (application to Dengue)

Living Planet 20 Symposium 22 · e e sa

UNESCO | IRCAI Global <u>AWARD</u> Top 100 Al solution for SDGs SUSTAINABLE GOALS to Φ-lab team for their work on forecasting dengue outbreaks with UNICEF

GLOBAL TOP 100 PROMISING PROJECT

"This project is a perfect example of collaboration between a humanitarian organisation and a research entity to support

TAKING THE PULSE

OF OUR PLANET

EDOM SDACE

Dohyung Kim

Lead Data Scientist at the UNICEF Office of Global Innevations INNOVATION

→ THE EUROPEAN **SPACE AGENCY**

ECMWF-ESA Workshop on Machine Learning for Earth Observation and Prediction

eesa

14–17 November 2022 | #AlforEOWS

REGISTRATION NOW OPEN

VR4VED

Earth System

Digital Twin Earth

Machine Learning

MEETING REPORT OPEN

ESA-ECMWF workshop report: Machine Learning for Earth System Observation and Prediction - recent progress and research directions

Rochelle Schneider^{1,2*}, Massimo Bonavita², Alan Geer², Rossella Arcucci³, Peter Dueben², Claudia Vitolo¹, Bertrand Le Saux¹, Begüm Demir⁴, and Pierre-Philippe Mathieu

¹European Space Agency, Frascati, 00044, Italy

- ² European Centre for Medium-Range Weather Forecast, Reading, RG2 9AX, UK
- ³ Imperial College London, London, SW7 2AZ, UK
- ⁴ Technische Universität Berlin, Berlin, 10587, Germany
- * rochelle.schneider@esa.int

This paper provides a short summary of the outcomes the workshop on Machine Learning (ML) for Earth System Observation and Prediction (ESOP / ML4ESOP) organised by the European Space Agency (ESA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) between 15 and 18 November 2021. The 4-days workshop had more than 30 speakers and 30 poster-presenters, attracting over 1,100 registrations from 85 countries around the world. The workshop aimed to demonstrate where and how the fusion between traditional ESOP applications and ML methods has shown limitations, outstanding opportunities, and challenges based on the participant's feedback. Future directions were also highlighted from all thematic areas that comprise the ML4ESOP domain.

THEMATIC AREAS

- 1. Enhancing Satellite Observation with Machine Learning (ML)
- 2. Hybrid Data Assimilation ML approaches
- 3. Geophysical Forecasting with ML and Hybrid Models
- 4. ML for Post-Processing and Dissemination

2022 3rd edition

confirmed!

*

ESA UNCLASSIFIED - Limited Distribution

OVERVIEW

KEY MESSAGES

- knowledge about the system they want to describe.

Over 1,100 registrations from 85 countries around the world. Germany, Italy, and the UK large representation.

1st-3rd days - devoted to 33 oral presentations from experts across Thematic Areas. 4th day - listen to the participants, coming from both academic and industry backgrounds with rich experiences and expertise on current ML methods for ESOP applications.

Importance of advancing on explainable ML tools and understand the inner-functioning of the model, tackling the 'black-box' challenge.

New ML in Earth Science agenda - revolutionise the value extracted from Earth Observation (EO) satellite images/videos: event recognition (cultural events vs manifestations) and building permission control based on text mining from urban planning regulations.

ECMWF's Senior Scientist Dr Geer stressed how EO products are essential to Data Assimilation systems, providing the initial conditions and parameter estimates of the geophysical atmospheric state to describe complex physical dynamics needed to make geophysical forecasts.

The incorporation of ML methods into Earth System's Data Assimilation can attempt to emulate the whole or part of the dynamical system.

ML limitations: very task-oriented methods - difficulties making predictions about physical processes (e.g., volcanic activity), since they lack prior

ML limitation: need for more AI-ready datasets and access to pre-trained ML models that need to be customised for a specific application.

Standard ML benchmark seen as a Triade: limitation, opportunity, and challenge

Private sector - reluctance on the operational/user services to explore ML approaches due to the strong interpretability and trustworthiness of (benchmark) statistical methods, and the concern about possible service disruptions due to unforeseen ML model issues.

<u>Future direction</u>: ML generalisation capacity (*a real game-changer!*), known as Transfer Learning – apply a trained-ML model to different geographical regions or temporal periods to the same or a similar problem (e.g., food security, climate change mitigation).

Future direction: ML techniques learn causal relationships rather than associations or patterns such as between climate variables.

<u>Future direction</u>: More scientists who can do both, ML and Earth system science - linking two communities.

<u>Future direction</u>: Adjust the ML models to widen the magnitude of their prediction range to capture severe events (e.g., flooding, Climate Change) due to their catastrophic impact on society and economy.

Further opportunities: explore the future digital twin engines provided by the **Destination Earth initiative**.

<u>Final remarks</u>: participants feedback reinforced the call to produce replicable, explainable, and sustainable ML methods

+

*

Al for Predictive Maintenance (ESOC) @esa **ML in Space Operations**

Monitoring and Analysis Manage Profiles Reporting E CDMU SW: Data Handling E CDMU SW: System Control E CRF HW (X-Band) 🕑 🧰 RS HW (S-Band) 🗉 🦲 Thermal Ctrl HW 📧 🦲 Thermal Ctrl SW E Correlation 📧 📋 Time Management 🛞 🦳 Alphanumeric Displays 20,000 - 40,000 TM parameters

(1)

Machine Learning in Space Operations 23/11/2021 14

ESA UNCLAS

•

European Space Agency

Mars Express

:E

Courtesy : Jose Martinez-Heras, Alessandro Donati, et al.

GalaxAI: Machine Learning for Spacecraft **Operations**

https://spaceandai.ijs.si/2020/Session%201_Matej%20Petkovic.pdf

*

SPACE AND ARTIFICIAL INTELLIGENCE Online Conference, September 4th, 2020 Organized by CLAIRE and ESA, in association with ECAI2020

Towards adaptative AI pipeline

ESA UNCLASSIFIED - For Official Use

European Space Agency

*

Data Augmentation - Labelling via Gamingsa

ESA UNCLASSIFIED - For Official Use

Data Augmentation - SAR (IceCube)

Water segmentation results

ESA UNCLASSIFIED - For Official Use

Different types of labels backprojected to slant geometry

*

European Space Agency

Ops SAT data-centric Al onboard challengesa

ESA UNCLASSIFIED - For Official Use

COMPETE

Data-centric Al Challenge: you are given a (quantized) neural model that has passed all the requirements for inference on-board OPS-SAT.

Can you train its parameters as to predict one of eight classes for some tiles (few shot learning) coming directly from the spacecraft imaging sensor? How to best represent the data

Search by similarity (no labels)

Clouds aware flood extent response services

Emmanuel Johnson^{1,2}, Lucas Kruitwagen^{5,2}, Guy Schumann⁶, Luis Gómez-Chova¹

- * Equal contribution

edit#slide=id.p

ML4Floods

end-to-end open source package for flood extent segmentation

Data acquisition from different sources Preprocessing Training of DL models Inference on new images Metrics Dashboards

EUMETSAT MOOC | Future Learn

Edge Computing

The value of satellite-based EO no longer grows with the ability to collect and transmit data back to Earth, it increasingly lies with the ability to transmit customer-relevant insight in real-time.

Peter Platzer, Spire, Φ-week 2019

Ultra-low Power, High peed, Cheap

European Space Agency

Flood extent/Water segmentation (optical)

ESA UNCLASSIFIED - For Official Use

Check Video <u>https://bit.ly/2PTSjgB</u>

www.nature.com/scientificreports

scientific reports

Check for updates

OPEN Towards global flood mapping onboard low cost satellites with machine learning

Gonzalo Mateo-Garcia^{1,9⊠}, Joshua Veitch-Michaelis^{2,9}, Lewis Smith^{3,9}, Silviu Vlad Oprea⁴, Guy Schumann^{5,6}, Yarin Gal³, Atılım Güneş Baydin³ & Dietmar Backes^{7,8}

D-Orbit Wild Ride Mission, June 2021 ION Platform with 6 cubesats, 20+Machine Learning Apps on SpaceCloud Dashing through the stars, Jan 2022 Re-training of ML

Re-programmable Al Brain

Cognitive Cloud Computing in Space

Key announcement – the age of AI and edge computing in space has come

DG Josef Aschbacher announced a new 1,000,000 € challenge (10 x 100 k€), driven by the vision of ESA Agenda 2025, to explore how the use of cloud computing and artificial intelligence in space could help transform the way we develop space missions and applications.

With this campaign, ESA is soliciting new mission concepts that can cover any space domain while complementing or augmenting existing and planned space-based systems. Ideas could address new ways to accelerate Earth and space sciences, new methods for extracting information on the fly, or new applications and services creating new markets.

Cognitive Cloud Computing - Discovery Call

https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/ The_Discovery_Campaign_on_cognitive_cloud_computing

ESA UNCLASSIFIED - For Official Use

- Al data centres
- Blockchain

•

- Tip&Cue LEO-GEO for Methane
- Space traffic management
- Neuromorphic computing
- Lunar rover autonomy
- Federated Learning for constellations
- Auto-calibration in orbit
- Optimised sampling dual camera

- +

Enabling Al-research assistant?

Opportunities

- Al feeds on Big data & learn the underlying Structure of data Al accelerates Time to Insight for EO
- Big complex problems can be split into small problems Reshape software-defined sensing
- Enable transfer learning

Challenges

- Whitening the black box & Interpretability (xAI)
- Quantifying Uncertainty
- Issue of generalisation + depends on data quality

ESA UNCLASSIFIED - For Official Use

Apollo 17, 1972

Al co-pilot

MAKE SPACE FOR EUROPE

linkedin.com/in/ppmathieu

ESA UNCLASSIFIED – For ESA Official Use

			84	
		95		
		69	iE	C
			111002	

#SpaceAmbition

philab.phi.esa.int

www.esa.int

→ THE EUROPEAN SPACE AGENCY

