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Exoplanets at high spectral resolution

Only possible with ground based telescopes

Species can be “matched” line by line to templates, e.g. via cross correlation
Each species has a unique pattern of spectral lines
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Detecting change in planet radial velocity 
during a few hours of observations

⇒ Telluric and planet signal disentangled 
⇒ Planet radial velocity directly measured

(Planet RV: 10-100 km/s; Stellar RV: 10-100 m/s)

Carbon monoxide - 2.3 µm

Earth’s atmosphere 
Hot Jupiter

Detecting the orbital motion of close-in planets

Transmission spectroscopy

Dayside spectroscopy



Dayside spectroscopy  
applicable to non-transiting planets!

The thermal spectrum  
of the planet is targeted directly
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Dayside Spectroscopy

High spectral resolution of non-transiting planets

The first and only method to study 
atmospheres of most non-transiting planets 

(evolved, on close-in orbits)
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Can solve for planet mass and orbital inclination

Carbon monoxide - 2.3 µm

Earth’s atmosphere 
Hot Jupiter
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Processing ground-based high-res spectroscopy

Observed

Normalised

Airmass corr.

These steps can be“automated” 
by algorithms decomposing data 

 into a linear combination of 
eigenvectors (e.g. PCA)

The process “auto-calibrates” the data: no reference star needed
However, broad-band variations are removed

Every spectral line stationary in wavelength is removed 
(check my lecture on Monday)

End point

Strong signal injected

Analysis

Time-correlated effects 
(transparency, throughput, etc.) 

will be “in common-mode” 
between spectral channels

The analysis progressively 
“normalises” these effects
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Extracting the (faint) planet signal: cross correlation

Noiseless model Noise+model

S/N/line ~ 5

S/N/line ~ 0.8

CCF
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5 hours of real data + 20x planet signal (CO)
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Planet radial velocity

Cross-correlation matrix 
CC(RV, t)

Cross-correlation with model spectra

Shifting and co-adding to planet rest-frame 
requires knowledge of planet orbital velocity 

(two parameters: slope and shift)

Extracting the (faint) planet signal: cross correlation

The peak CC tracks 
the planet radial 
velocity in time
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Detections and velocity maps
Maximising the cross correlation value as a function of orbital parameters

2 velocities to describe a circular orbit ⇒ a 2-dimensional map

KP = vorb sin(i)

Maximum planet’s 
orbital RV

(at quadrature)

Bulk RV of the star+planet system 
(systemic velocity)



Pilot study: τ Boo b (Brogi+ 2012)

Measured:
RV semi-amplitude ratio: KP/KS 
⇒ Mass ratio: MP/MS 

Inferred:
Orbital inclination i 
Planet mass MP = ƒ(MS) 

Uncertainties in planet mass 
dominated by uncertainties in 
stellar mass.
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15 hours of VLT/CRIRES, 2.3µm 
Carbon monoxide detected at 6σ

Star and planet as spectroscopic binaries
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For τ Boo b:  
i = (45.5 ± 1.5) deg, MP = (5.95 ± 0.28) MJup



The chemical inventory at high spectral resolution
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Observed sample: 30 planets
10 non-transiting, 18 transiting, 2 directly imaged 

Potential sample: > 50 (currently) 
15 non-transiting (K < 6.5 mag) + 40 transiting (K < 10 mag)

CO2010

H2O2013

CH4

HCN

TiO2017

2018

2019

NH3 OHC2H2

2021

Molecules  
Constraints on T, abundances 

(mostly nIR)

Atoms  
Probing higher altitude  

incl. exospheres, escape, etc. 
(mostly optical)



From detecting to measuring: detection significance
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WASP-39b, Wakeford+ 2017

-40 -20 0 20 40
Vsys (km sec-1)

60

80

100

120

140

K P
 (k

m
 s

ec
-1
)

O
rb

ita
l I

nc
lin

at
io

n 
(o )

20

30

40

50

60

70

90

-2m

0

+2m

+4m

+6m

Systemic velocity (km s-1)

Pl
an

et
 R

V 
am

pl
itu

de
 (k

m
 s

-1
)

Low-res spectroscopy High-res spectroscopy
Brogi+ 2012

Low-res spectroscopy recovers an actual spectrum
Models can be matched to observations via chi-square fitting (also in a Bayesian way)

High-resolution spectroscopy measures a level of correlation

How do we even quantify significance?
How do we “select” models?

Quantifying the “goodness of fit” of a model is not (yet) possible at high-res
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S/N = Peak CC / stdev(CC)

S/N as a proxy for detection significance

Signal: the peak value of the 
total cross correlationNoise: the standard 

deviation of all the other 
cross correlation values

Immediate and intuitive quantity to compute

Error bars are usually defined by (Vsys, KP) values corresponding to (S/N)max – 1 

Some of the “noise” is actually auto-correlation / aliasing signal

Some (Vsys, KP) values will have increased noise  
due e.g. to residual telluric or stellar lines

At low SNR peaks can arise by just noise fluctuations



Detection significance from statistical tests on the CCFs
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Planet radial velocity

➡ In-trail sample
➡ Out-of-trail sample

Testing the means of the in-trail and out of trail cross-correlation values

Null hypothesis H0: in-trail and out-of-trail sample have the same mean

Welch t-test (data samples can have ≠ size and variance) used to reject H0  
p-value ⇒ detection significance σ

Hp #1: the cross correlation values follow a Gaussian distribution (usually true)

Hp #2: the cross correlation values are independent (depends on RV sampling)

n-σ error bars can correctly be determined as σmax – n

Dependence on the “width” of the in-trail sample (at least 1 FWHM)
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Detection significance (σ)

Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere
P. Giacobbe, M. Brogi, S. Gandhi et al., Nature 592, 205-208 (2021)

4 transits of hot Jupiter HD 209458b (1,500K) ⇒ H2O + 5 species simultaneously detected

What does it mean for the 
atmosphere of HD 209548 b?

Need to move beyond detecting and towards measuring
(Just hold on for a few more slides)

GIANO@TNG (3.5m)
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From detecting to measuring: our checklist

Cross-correlation

 Raw Data

Processed 
Data

Analysis

Input parameters
Abundances, T-p profile, Velocities

Radiative 
transfer

Model spectrum

design a method to select the best model within a grid
explore the whole parameter space to understand degeneracies

account for any biases of the analysis
understand what’s the information content at high-res

Need to:



The data analysis is not completely harmless
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The removal of telluric and stellar lines affects exoplanet lines
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Initial

Post-analysis

Shown by Brogi & Line (2019) on simulated data - easy to see in the noiseless case

Model reprocessing is unavoidable to obtain unbiased measurements from HRCCS

Different telluric removal techniques show different biases 
see Gibson’s talk 

(e.g. airmass de-trending, PCA, Sysrem)

Altered shape & depth of spectral lines ⇒ biased abundances and T
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Observed Data

Analysis

Processed Data
(noisy)

 Modelled Data

Processed Model
(noiseless)

Analysis

Model spectrum

Cross Correlation

CCF
?
??

?

Model reprocessing: an unavoidable step

Likelihood

Can we translate
cross correlation into a 
statistically meaningful 
quantity (a likelihood)?

The model planet spectrum is injected in the data or a synthetic sequence is created



What is the information content in high-res data?
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High-res data is normalised to remove stellar & telluric spectrum
(loss of absolute level of continuum in both emission and transmission)

HRCCS can measure absolute and relative abundances with the right framework

Data is still expressed in units of stellar spectrum
(absolute line-to-line and line-to-continuum depths can still be recovered)

No actual “spectrum” is visible
(no ground truth - consequences for goodness of fit)

Line ratios and line shape change with absolute abundances and temperatures

Courtesy of Mike Line
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00
0

Water VMR



Building a likelihood function for high-res data
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Brogi & Line (2019), but also Zucker (2003) and Gibson et al. (2020)

logL contains the model and data variances s2 
(it accounts for the amplitude of lines)

logL contains the cross covariance R 
(not normalised - accounts for amplitude of lines) 

(penalises anti-correlation - accounts for emission/absorption)

Cross-
covariance

Model
Variance

Data
Variance

Length of array

We can now write the formulas for the variance of the data (sf2),
the variance of the model (sg

2), and the cross-covariance R(s):
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For practical applications, Equation (9) is slightly faster to
compute than Equation (10) and is the preferred choice for our
numerical implementation. It is important to note that the data
variance sf

2( ) only needs to be computed once at the end stage
of the data analysis (step 7 in Section 3.2 below). However, sg

2

will change as a function of the model tested, and also to a
lesser extent as a function of the Doppler shift tested.
Therefore, in our analysis we will recompute sg

2 every time a
model is evaluated, and for each of the spectra in the time
sequence.

Equation (9) preserves the sign of the cross-covariance and
will therefore discriminate between correlation and antic-
orrelation. This is a direct consequence of imposing a=1. In
addition, when the variance of the data and the variance of the
(scaled) model differ significantly, the likelihood decreases
accordingly. This incorporates a metric for comparing the
average line depth to the S/N of the data.

It is important to realize that if we carried out the
mathematical calculations with the scaling factor a as an
explicit variable and then imposed L alog 0s s �( ) at the
stage of Equation (9) (had we kept an a and a2 multiplier in
front of the R(s) and sg

2 terms, respectively), we would have
obtained as solution a=1. This means that our physically
motivated choice of a=1 also corresponds to choosing the
maximum-likelihood estimator for this variable.

All of the quantities listed in Equation (9) are obtained as
byproducts of the current analysis techniques of high-resolution
spectra. In Section 3.2, we discuss additional details of the data
analysis important for the application of this formalism.

3. Tests on Simulated Data

In this section, we demonstrate, on a simulated emission
spectrum data set, the feasibility and utility of our novel
HRCCS retrieval framework and the CC-to- Llog mapping
presented in Section 2. We start by describing the construction
of the simulated data set in Section 3.1 and its analysis in
Section 3.2. We present the “fiducial” retrieved constraints in
Section 3.3, compare the constraints derived from the different
CC-to- Llog mappings in Section 3.4, explore the impact of
different water line lists in Section 3.5, and finally combine in a
coherent way the high-resolution spectra with a simulated HST
Wide Field Camera 3 (HSTWFC3) LRS data set in Section 3.6.

3.1. Construction of the Simulated Data Set

One half night of data is simulated based on real CRIRES
observations of HD209458b (Schwarz et al. 2015; Brogi et al.
2017). The synthetic data set incorporates the photon noise
from the star, variations in the Earth’s transmission spectrum
with airmass, variable detector efficiency, the phase-dependent
Doppler shift of the planet, and the time-dependent IP. This
simulated data set constitutes the basis for testing the retrieval
framework presented in the previous sections, as it incorporates
all the major sources of uncertainties in the analysis of
HRCCS data.
To generate this data set, we compute a solar-composition

planet atmosphere with parameters listed in Table 1 and using
the modeling tools described in Section 2.1. We run the
computations over the wavelength range 2267–2350 nm
(matching the CRIRES setup of the real observations) at a
resolving power of R∼440,000 and scale the model to the
stellar flux of HD209458 via
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where F is the model flux in Wm−2 m−1, RP and Rå are the
stellar and planet radii, respectively, and B the Planck function
at the stellar effective temperature Teff approximating the stellar
spectrum (Table 2). The top panel (Step 1) of Figure 2 shows a
small portion of this spectrum in the wavelength range
corresponding to detector 1 of CRIRES.
We adopt a Keplerian circular velocity of 145.9 km s−1, i.e.,

the literature value for HD209458b, and a combination of
systemic and barycentric velocities to match the actual
observations of night 1 in Brogi et al. (2017; Table 2). The
scaled model Fscaled is Doppler-shifted according to the radial
velocity at each epoch of observations computed via
Equation (1) and saved in a matrix F′(λ, t). In this test case,
the observations span 1024 pixels/wavelength channel and 59
separate integrations (spectra) covering phases 0.506–0.577
resulting in a ∼75 km s−1 change in Doppler shift throughout
the sequence (Figure 2, Step 2).
The wavelength- and time-dependent transparency T(λ, t) of

Earth’s atmosphere (the telluric spectrum) is computed via the
ESO Skycalc command-line tool, which is based on the Cerro
Paranal Sky Model (Noll et al. 2012; Jones et al. 2013). The
model takes into account the sky position of the target at the
time of the observation and meteorological data, except for
the precipitable water vapor (PWV) that needs to be adjusted
manually. We find a good match to the HD 209458 data set by
adopting the average PWV of 2.5 mm for Cerro Paranal.

5

The Astronomical Journal, 157:114 (17pp), 2019 March Brogi & Line

Cross correlation

We would like to:

• use the match in line position  
• distinguish between +ve and -ve correlation 
• use information about line shape and amplitude
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Exploring a grid of equilibrium models by varying metallicity and C/O

Addition of clouds (with LR parameters) 
highly favoured (17 sigma)

Solar
values

Disequilibrium chemistry disfavoured

HD 209458b formed beyond the snow line and 
subsequently migrated w/o accreting ice 

planetesimals

Model selection through likelihood-ratio tests

Giacobbe, Brogi, Gandhi et al., Nature (2021)
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Cross Correlation

Observed Data

Analysis

Processed Data
(noisy)

 Modelled Data

Processed Model
(noiseless)

Analysis

Model spectrum

log-Likelihood

Input parameters
Abundances, T-p profile, Velocities

Radiative 
transfer

Yo
ur 

fav
ou

rite
 

MCMC sa
mpli

ng
 

alg
ori

thm

Running a Bayesian retrieval on HR data
Letting the data “inform” model selection to explore full parameter space
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R~45,000 

1.45 - 2.45 µm simultaneously


Silicon immersion grating

(keeping the instrument compact)

The emission spectrum of WASP-77 A b

IGRINS@Gemini-S (8.1m)

Line, Brogi, Gandhi et al., Nature, accepted (coming soon!)

Observed orbital phases
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Achieving “solar system” precisions in the chemistry
Full retrieval with the Brogi & Line (2019) likelihood

7 gasses + 5 T-p parameters + 
2 velocities + scaling = 15-

parameter MCMCBound and very tight
CO and H2O abundances

Upper limits on
CH4, NH3, H2S, HCN

Monotonically decreasing T-p profile
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Achieving JWST precisions in the chemistry
0.1-0.2 dex precision in absolute abundance for H2O and CO

Validated independently with 
2 retrieval frameworks 

CHIMERA (Line) 
GENESIS/HyDRA-H (Gandhi)

Accuracy tested by changing: 
Data processing 

T-p parametrisation 
Choice of line lists

What can we do with such precision?

Computationally intensive 
1 model evaluation =  

5-10s on a single CPU core 
(GPU+parallel computing)
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Solar

Solar
Rain-out+

“High C/O” 
(>0.8)

Eq. Chem
Diseq. Chem

M
g2 SiO

4  C
ond.

Lowest Probed 
Pressure

Highest Probed 
Pressure

1D RC 
Predictions
Retrieved 

a b

c d

Ti  C
ond.

39.3%

86.4%

98.9%

39.3%

86.4%

98.9%

CO+H2O ⇒ Metallicity, C/O

Constraints in the chemistry
WASP-77 A b has sub-solar metallicity but solar C/O

C/O & metallicity of hot Jupiters can be connected to 
formation and early evolution scenarios

2021 has seen three measurements of C/O & metallicity 
(Giacobbe+21; Line+21; Pelletier+21 - see talk!)

Mass-metallicity relation
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A joint analysis of low- and high-resolution spectra

Low res information
Broad-band variations (the “wiggles” in the spectrum) 

Overall transit depth of planet flux (the “level of continuum”) 
see Natasha’s and Ryan’s lecture on Tuesday

High-res information
Line-to-line variations, line-to-continuum variations, line shape 

see Sid’s lecture on Tuesday

Seeing above the clouds 197

Figure 2. High-resolution transmission spectrum of GJ 436b with varying cloud deck pressures. The diamond markers in the left-hand panel indicate the binned
HST WFC3 spectrum with the corresponding height of the H2O spectral feature given in parts per million. The right-hand panel shows the high-resolution
spectra in a small region around 1.4125 µm. In each model, the H2O volume mixing ratio was fixed to log10(H2O) = −3.25.

Figure 3. Spectral features in the 1.1–1.7 µm range from the grid of models for GJ 436b discussed in Section 2.1.2. The left-hand panel shows the ∼1.4 µm
H2O feature in the binned HST WFC3 spectra, and the middle panel shows the feature in the high-resolution model spectra, with both given in parts per million.
The WFC3 spectra for each model have been binned to the same resolution as the Knutson et al. (2014a) observations. The right-hand panel shows the ratio of
the high-resolution spectral features to the WFC3 features.

The spectral features for both cases are thus reduced as the abundance
of H2O reaches 100 per cent because the atmospheric scale height,
kbT/µg, decreases by a factor of ∼8. Fig. 4 shows the spectral
features in terms of number of pressure scale heights, kbT/µg. This
removes the effect of the mean molecular weight and shows that
the features remain strong at high H2O abundance. The HR spectral
features eventually plateau at high abundance (log10(H2O) ! −1) as
the strongest lines begin to saturate, but the binned WFC3 features
continue to increase. This is because the binned WFC3 points also
have a dependence on weaker lines that continue to increase in
strength as the H2O abundance becomes very high. Hence at high
H2O abundances, the ratio of the HR spectra to the binned WFC3
spectra decreases as these weaker lines become more prevalent and
increase the strength of the binned WFC3 features more (see the
right-hand panel of Fig. 3).

2.2 Model data

We generate a simulated data set to demonstrate how HRS may be
used to characterize cloudy exoplanets. We include in the simulation

the essential ingredients to assess the impact of realistic sources of
noise, i.e. a model for the M-dwarf star, a model telluric spectrum,
and a model for instrumental efficiency, wavelength solution, and
pixel scale of three near-infrared spectrographs, namely GIANO at
the TNG, CARMENES at CAHA 3.5m, and SPIRou at CFHT. The
characteristics of the three instruments are estimated from real data
of known bright stars (HD 189733 and τ Boötis) downloaded from
the instrument archives, and thus provide a realistic representation
of the real performances on sky.

M-dwarf model spectra are obtained from the Phoenix BT-Settl
grid (Allard, Homeier & Freytag 2012) and have solar metallicity.
For GJ 3470, a model with surface gravity of log (g) = 4.5 and
effective temperature of Teff = 3600 K is chosen. For GJ 436, a
model with log (g) = 5.0 and Teff = 3300 K is chosen. These are the
grid points that most closely match the stellar properties reported in
the literature. Although we do not expect these M-dwarf models to
accurately reproduce the position and intensity of stellar spectral lines
observed at high spectral resolution, they will appropriately estimate
the fluxes received from these stars and will reproduce the structure
of their spectral bands, and thus allow us to appropriately estimate the
wavelength dependence of the signal-to-noise ratio of observations.

MNRAS 498, 194–204 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/1/194/5899070 by U
niversity of W

arw
ick user on 19 February 2021

Independently encoding opacity sources, temperature vs pressure, gravity, etc.
Example: the effects of clouds

Gandhi+20



Combining LR and HR within the likelihood framework

LRS (HST WFC3)
HRS (CRIRES-K)
HRS+LRS

2.32521

2.32517

1.380

1.275

Brogi & Line (2019): simulated HST + VLT/CRIRES observations
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Noise level of current observatories (1 eclipse / 5 hours)
total logL = logL (low-res) + logL (high-res)

Published LR+HR on real data are still rare 
(Piskorz+18, Gandhi+ 2019, Gandhi+ in prep.)

Why should we even care with JWST incoming 
and such high-quality ground-based observations?



4 good reasons to combine low- and high-resolution
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Robustness
Independent method, information, and instruments 

Test for validity of model assumptions

Errors
Confidence intervals shrink across the whole parameter space

Reducing biases and degeneracy
Aerosols and 3-dimensional effects have different impact on HR and LR

Optimisation
Use the predictive capability of a HR dataset 

 to inform JWST observations

Ground and space observations are in synergy, not in competition


