

4MOST - StePS

Angela Iovino
 INAF-OABrera

on behalf of StePS collaboration

A. Gallazzi, F. La Barbera, M. Longhetti, A. Mercurio, C. Tortora, S. Zibetti,
G. Busare11o, L, Costantin, F. D’Eugenio, G. DeLucia, R. DePropris, A. Ferre-Mateu, A. DeLorenzo Caceres, F. Fontanot, R. Garcia-Benito, C. Haines, M. Hirshmann, S. McGee, C. Mancini, L. Morelli, C. Pacifici, A. Pasquali, B. Poggianti, L. Pozzetti, P.

Sanchez-B1azquez, A. Vazdekis, B. Vulcani, A. Zanella, M. Annunziatel1a, F. Belfiore, L. Cassarà,
E. Corsini, G. Cresci, R. Gonzales-Delgado, A. Moretti, P. Perez-Gonzalez, E. Perez-Montero, S.

Trager, A. van der Wel, D. Vergani

StePS - Stellar Population Survey

- Mapping galaxy evolution over the past 7 Gyrs

StePS Science Goal in a sentence: detail the processes that shape galaxy evolution in the past ~ 7 Gyrs (half the life-time of Universe) and that produce galaxy properties as observed at $\mathbf{z} \sim 0$

StePS Ingredients: high S / N, high resolution spectra with wide wavelength coverage of $\mathrm{IAB}_{\mathrm{AB}}<20.5$ selected galaxies in the range $0.3<\mathrm{z}<0.7$

StePS Ingredients

$I_{A B<20.5} \& 0.3<z<0.7$: a redshift range still Iargely unexplored

StePS fits nicely in the redshift niche between SDSS and LEGA-C

Stellar Mass compleness

Redshift	$\log \left(m / M_{0}\right)$
0.3	10.4
0.5	11.0
0.7	11.3

StePS - Stellar Population Survey

- Mapping galaxy evolution over the past 7 gyrs

StePS Ingredients: high spectral quality, high resolution spectra with wide wavelength coverage of $\mid A B<20.5$ selected galaxies in the range $0.3<z<0.7$

StePS Products: - age of the stellar component

- star-formation activity time-scale
- metal abundances in stars and gas
- presence/absence of AGN activity
- galaxy stellar and dynamical mass
- presence of gas inflows and outflows

Environment information

StePS Ingredients

High S/N + High resolution

Together enable good estimates of key spectral indices that are stellar age and metallicity indicators

VIPERS (---) vs SDSS (一) R200 vs R2000

StePS Ingredients

High S/N + High resolution + Wide λ coverage

Coverage of main spectral indices and abs/em lines as a function of redshift in the range of interest

StePS ideal instruments

WEAVE@WHT and/or 4MOST@VISTA

a new window of opportunity for some years to come

Next big step forward will be MSE: 10 mt telescope, 10 years timescale!

StePS ideal instruments

	WEAVE @ WHT	4MOST @ VISTA
Telescope size	4mt class	4mt class
FoV	3 sq degs	4 sq degs
R @ Low resolution mode	5000	6000
Lambda range	$3600-9900$ AA	$3700-9500$ AA
Multiplexing	1000	1600
Fibers on sky aperture	$1 " .3$	$1 " .45$

High S/N + High resolution + Wide λ coverage
25k spectra @ 7h texp - 0.3<z<0.7 - IAB<20.5 targetting well known extragalactic fields

Realistic end-to-end simulations using COSMOS field HST data computed in-fiber fluxes and S/N

Assuming $1^{\prime \prime} .3$ arcsec seeing

High S/N + High resolution + Wide λ coverage
25k spectra @ 7h texp - 0.3<z<0.7 - IAB<20.5 \rightarrow median (S / N) ${ }^{\sim} 10$ in I-band

A S/N value of ~10 in I-band enables good estimates of major spectral features across the full wavelength range covered

High S/N + High resolution + Wide λ coverage

At texp~7 hours, only ~ 10\% of targets will have a median (S/N)>20 in I-band

The most massive, redder and lower redshift galaxies: far from being a representative subsample.

Take a step forward:

Higher S/N + High resolution + Wide $\boldsymbol{\lambda}$ coverage
3.5k spectra @ 30h texp $-0.3<z<0.7-I_{\mathrm{AB}}<20.5 \rightarrow$ median $(\mathrm{S} / \mathrm{N}) \sim 30$ in I-band

Trading sample size for much higher S/N A LEGA-C like survey at $0.3<z<0.7$

Take a step forward:

Higher S/N + High resolution + Wide $\boldsymbol{\lambda}$ coverage

3.5k spectra @ 30h texp - 0.3<z<0.7 - $\operatorname{IAB}<20.5 \rightarrow$ median $(S / N) \sim 30$ in l-band

Trading sample size for much higher S/N
Piggybacking on WAVES-DEEP footprint -

- Take advantage of planned repeated passes AND
- Get precise information on galaxy position within the cosmic web

Take a step forward:

Higher S/N + High resolution + Wide $\boldsymbol{\lambda}$ coverage

3.5k spectra @ 30h texp -0.3<z<0.7 - IAB<20.5 \rightarrow median (S/N)~30 in I-band

Gallazzi et al. 2005

Take a step forward:

Higher S/N + High resolution + Wide λ coverage
3.5k spectra @ 30h texp -0.3<z<0.7 - IAB<20.5 \rightarrow median (S/N)~30 in I-band

Take a step forward:

Strategy

- observe repeatedly subset of bright targets (~200 per FoV), embedded in the footprint of WAVES-Deep, where high number of passes are expected, totalling ~30h exp for ~3.5K galaxies

Total Fibre hours budget

- 100K fiber hours - only 2.5% of total available for public surveys

A gain for all

- 4MOST-StePS is a powerful enhancement for a full science exploitation of WAVES-Deep - we will explore the connections between observed physical properties (mass, SFR, stellar age, metallicity) and environment - down to galaxy pair scales
- 4MOST-StePS data will provide robust physical information, given their superior S / N, down to lower stellar masses and higher redshifts, thus complementing WEAVE-StePS results
- WEAVE-StePS larger statistic will help characterizing global trends in galaxy evolution mechanisms

Take home messages

* 4MOST-StePS is a low-cost survey with a high scientific return
* 4MOST-StePS will provide an unbiased empirical description of the evolutionary path of massive galaxies in the still unexplored redshift range $0.3<z<0.7$
* The important synergies with the science case of WAVES-DEEP is a win-win opportunity that should be seized

4MOST - StePS

Angela Iovino
 INAF-OABrera

on behalf of StePS collaboration

A. Gallazzi, F. La Barbera, M. Longhetti, A. Mercurio, C. Tortora, S. Zibetti,
G. Busare11o, L, Costantin, F. D’Eugenio, G. DeLucia, R. DePropris, A. Ferre-Mateu, A. DeLorenzo Caceres, F. Fontanot, R. Garcia-Benito, C. Haines, M. Hirshmann, S. McGee, C. Mancini, L. Morelli, C. Pacifici, A. Pasquali, B. Poggianti, L. Pozzetti, P.

Sanchez-B1azquez, A. Vazdekis, B. Vulcani, A. Zanella, M. Annunziatel1a, F. Belfiore, L. Cassarà,
E. Corsini, G. Cresci, R. Gonzales-Delgado, A. Moretti, P. Perez-Gonzalez, E. Perez-Montero, S.

Trager, A. van der Wel, D. Vergani

