4MOST - 4m Multi-Object Spectroscopic Telescope

ETC algorithms and assumptions

Genoveva Micheva (AIP) 4MOST Instrument Scientist

The ETC

- Provides the user with some idea of how long the exposure times would be
- Assumptions based on the Top Of the Atmosphere to Detector (TOAD) instrument simulation software.

The survey nature of 4MOST implies that...

- User cannot choose specific sky conditions
- User cannot choose airmass
- User cannot choose seeing
- User cannot choose time of observations
- User cannot choose sky positions

Can the user choose anything at all?

- User must choose targets ©
- User must provide required S/N

Some key 4MOST features

- FoV 4.2 deg^2 $^{\wedge}$
- Minimum distance between fibers: 15 arcsec
- 2436 fibers (LRS 2x812; HRS 812)
- LRS 370 - 950 nm
- HRS 392 - 435 nm; 516 - 573 nm; 610 679 nm

ETC assumptions:

- 4MOST key features - ETC must use some representative fiber properties
- User cannot choose observing conditions ETC must use typical observing conditions

The ETC uses time-averaged fiber-averaged properties

Representative Sky

Representative Sky

Dark: FLI=0.2, Moon/Sun sep=53 deg, $\mathrm{X}=1.2$
Grey: $\mathrm{FLI}=0.5, \mathrm{M} / \mathrm{S}=90 \mathrm{deg}$

Representative Sky

- ESO's SkyCalc models
- Default SkyCalc parameters
- Moon/target separation 60 deg
- Moon/Sun separation (53; 90;143 deg)
- Moon altitude 45 deg
- 350 - 1000 nm at fixed spectral resolution of 100000

Representative Airmass:

- User provides target coordinates
- ETC converts DEC to representative airmass:
$- \pm 15$ degrees away from the meridian, i.e. Hour Angle $=1 \mathrm{~h} . \rightarrow$ target altitude a
$-\mathrm{AM}=\left\{\frac{1}{\cos (a)}\right\}$
- Circumpolar targets (DEC ≤-79.6) at $\mathrm{AM} \geq 1.74$ (ZD ~55 deg) \rightarrow limit of the ADC

Airmass + Sky

- Airmass bins [1.05, 1.1, ...,2.0]
- Each bin - Dark, Grey, Bright sky

Airmass + Sky

Airmass + Seeing

- Reference seeing values are scaled with airmass and wavelength:
- $S(X)=\sqrt{\left(S_{\text {ref }} \cdot\left(\frac{X}{X_{\text {ref }}}\right)^{0.0}\right)^{2}+S_{\text {uista }}^{2}}$
- $S(\lambda)=S_{r e f} \cdot \lambda^{-0.2}$

Reference Seeing

- Reference seeing $=0.8 \operatorname{arcsec}$

Based on old statistics of DIMM June 2014- Sept 2017.
New statistics show smaller Median seeing of 0.7 arcsec . ETC uses a slightly pessimistic Value of 0.8 arcsec.

Mirror reflectivity

- A function of wavelength and time
- ETC assumes 86\% reflectivity (as a function of λ)

Telescope vignetting

- TOAD model contains vignetting due to
- Central obstruction
- Spider vanes of the M2 holding cell
- The M2 mirror is undersized
- The Wide field corrector optics
- The atmospheric dispersion compensator
- ETC uses field centre.

Telescope vignetting

Spider Vane Vignetting Map

Telescope PSF and fiber size

- ETC uses telescope PSF at field center (function of λ)
- ETC uses a fixed fibre core diameter of $85 \mu \mathrm{~m}$

Fibre Core diameter density function

Fiber aperture size on sky

- Is a function of field position for fixed fiber core size
- 1.56 " ${ }^{2}$ - 1.63 " ${ }^{2}$; ETC - 1.605 "2

Plate Scale depending on radial field position

Fibre Aperture Area

On-sky fibre aperture for a 85 um fibre
Mean fibre aperture: 1.605

Intrinsic fiber transmission efficiency

- Relatively stable for each fiber
- ETC uses the mean fibre transmission efficiency of 0.895

Residual atmospheric dispersion

- Residual between 0"' (field center, zenith) and 0.25 " (field edge, ZD = 55 deg)
- ETC takes (field center, zenith)

	$\begin{gathered} \text { airm: } 1.00 \\ \text { zd: } 0.00 \\ \text { adc } 0.0 \end{gathered}$	$\begin{aligned} & \text { airm: } 1.07 \\ & \text { zd: } 20.29 \\ & \text { adc }-15.0 \end{aligned}$	$\begin{aligned} & \text { airm: } 1.23 \\ & \text { zd: } 35.53 \\ & \text { adc }-30.0 \end{aligned}$	$\begin{aligned} & \text { airm: } 1.42 \\ & \text { zd: } 45.28 \\ & \text { adc }-45.0 \end{aligned}$	airm: 1.59 zd: 51.04 adc -60.0	airm: 1.70 zd: 54.06 adc -75.0	airm: 1.74 zd: 55.00 adc -90.0
	$\bigcirc \quad-$	\bigcirc	\checkmark	$\bigcirc \quad \rightarrow$	$\bigcirc \quad-$	\bigcirc	\bigcirc

\square

Fiber tilt-induced vignetting losses

- 2 effects:
- Fiber entrance: focus shift, changes the PSF seen by the fiber
- Fiber output: broadening of the light beam, which is then vignetted by the spectrographs
- ETC assumes a non-tilted fiber
- Minimum losses due to the broadening of the beam
- But Non-optimal due to slight de-focus

Detector characteristics

- Detectors have 4 quadrants, each with a RON, DC, Gain.
- ETC uses the mean of all quadrants for all 3.
-E.g. DC = 2.288 e-/h
- E.g. RON = 2.5 e-
- E.g. Gain $=1.06875$ e-/ADU

Charge transfer efficiency

- ETC uses position close to center of slit (~0.99)

Other effects/assumptions

- Fiber-to-target alignment accuracy of $0.1^{\prime \prime}$ (between fiber center and target position).
- ETC uses a single Focal Ratio Degradation model (based on lab measurements).
- Spectrograph image quality
- Material transmission efficiency

S/N calculation

- On-detector binning only in dispersion direction
- No binning in cross-dispersion direction (pipeline limitations)
- Per-pixel S / N converted to per-Å S/N using: $-S N R_{\text {spec }}=\sqrt{N_{\text {pix }}} \cdot S N R_{\text {pixel }}$
$N_{\text {pix }}(\lambda$, LRS/HRS, red/green/blue $)=\#$ pixels that make up 1 A

Reddening

- ETC does not apply any reddening internally
- User templates must have reddening applied already!

Magnitudes

- User provides total Pogson magnitudes of target
- AB or Vega
- Available filters (next slide)
- ETC internally calculates the magnitude inside the aperture of the fiber

Filters

- GAIA DR2r: $G_{B P}, G_{R P}, G$
- DECam (CTIO): g,r,i,z
- VISTA: Z, Y, J, H, Ks
- Standard filters:
- Bessel U
- Johnson B,V
- Cousins R,I
- All filter transmission is photon-counting curves!

Target Shape

- Point source - ETC assumes Moffat with $\beta=2.5$
- Extended source - ETC assumes Sersic profile, user provides $R_{\text {eff }}$ and n

SED shape: Templates

- ESO standard templates:
- MARCS
- Kinney- Calzetti
- HIl region
- Kuruzc
- Pickles
- QSO
- PNe
- User-defined spectrum

Templates

Target model could be a power law spectrum:

- $F(\lambda)=F_{0} *\left(\frac{\lambda}{\lambda_{c}}\right)^{p}$
where
λ - wavelength
F_{0} - continuum flux level @ λ_{c}
p - powerlaw index
- $F_{0}=10^{-\left(0.4 * M_{\text {obs }}+Z P\right)}$

Where
$M_{o b s}$ - apparent magnitude
ZP - zero point of the observing band

Scaling of Input Source Templates

- User provides total magnitude $m_{\text {Vega }}(k)$ (or AB)
- Filter k (with transmission T_{λ})
- Source template $F^{\text {temp }}$
- $F_{k}^{\text {temp }}=\frac{\int \lambda * T_{\lambda} F^{\text {temp }} d \lambda}{\int \lambda * T_{\lambda} d \lambda}$
- $f=10^{-0.4\left(m_{\text {Vega }}(k)-2.5 \log _{10} Z P_{k}^{\text {Vega }}\right)}$
- Scaling factor $\xi=\frac{f}{F_{k}^{\text {tem }}}$
- $\quad F_{k}^{\text {scaled }}=\xi F^{\text {temp }}$

Take-away message

- The ETC takes a number of shortcuts
- The virtual fiber used in the ETC does not exist
- But averaged over the survey lifetime, the ETC predictions will give correct results!

Nurham

