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Legal Disclaimer & Optimization Notice

Performance results are based on testing as of September 2018 and may not reflect all publicly available security updates. See configuration disclosure for
details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation
or its subsidiaries in the U.S. and other countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.
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LEGAL NOTICES & DISCLAIMERS

This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at
intel.com, or from the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about
performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may
affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that
involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings,
including the annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and
confirm whether referenced data are accurate.

Intel, the Intel logo, Pentium, Celeron, Atom, Core, Xeon, Movidius and others are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
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Outline

* Introduction to Intel® DL Boost

* Intel® Al optimized frameworks

* Integration with the popular Al/ML frameworks:
» Tensorflow accelerated with Intel® MKL-DNN
* Intel® Machine Learning Scaling Library
= Horovod

= Hands-on
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WHAT IS AI?

Al
MACHINE

Regression

SUPERVSED
EARNING =~

Classification

Clustering

Decision Trees

Data Generation

UNSUPERVISED

_ LEARNING
Image Processing ——
Speech Processing : . I.EARNING
Natural Language Processing DEEP - E.: A@
Recommender Systems I_EARNING " el ™ Vr
Adversarial Networks REINFURCEMENT
Reinforcement Learning I_EARNING

No one size fits all approach to Al
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MACHINE
LEARNING

How do you
engineer the best
features?

DEEP
LEARNING

How do you guide
the model to find
the best features?

MACHINE V3. DEEP LEARNING

CLASSIFIER
NN U1 Sz - fi) ALGORITHM
Roundness of face
Dist between eyes SVM
Nose width Random Forest .
Eye socket depth Naive Bayes Arjun
Cheek bone structure Decision Trees
Jaw line length Logistic Regression
...etc. Ensemble methods
N X N NEURAL NETWORK
Arjun
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DEEP LEARNING GLOSSARY

—  LIBRARY

MKL-DNN
Spark MlLib

DAAL

Scikit-Learn

Intel® Mahout
Distribution

for Python

NumPy

Pandas

Hardware-optimized
mathematical and other
primitive functions that are
commonly used in machine &
deep learning algorithms,
topologies & frameworks

FRAMEWORK

B
Catte

Open-source software
environments that facilitate deep
learning model development &
deployment through built-in
components and the ability to
customize code

TUPULUGY —

’ TS WS LS VoW WP

Mg w N

eepspee(:h *ReSNeg}}

Transform
SSD- MoblleNe

@

Wlde variety of algorlthms
modeled loosely after the human
brain that use neural networks to

recognize complex patterns in
data that are otherwise difficult to
reverse engineer

Translating common deep learnlng termlnology
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DEEP LEARNING BREAKTHROUGHS

Machines able to meet or exceed human image & speech recognition

IMAGE RECOGNITION 200, . SPEEGH RECOGNITION

Present

DOCUMENT | OIL & GAS VOICE DEFECT

SORTING SEARCH ASSISTANT j DETECTION

-Co sational-speech-recognition-milestone/ (Right)
- N -
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DEEP LEARNING BASICS 0
TRAINING

Human DID YOU KNOW?

— ] Bicycle
Forward Training with a large
(% > “Strawberry"—‘ (% data set AND deep (many
| —— layered) neural network
N ? Bicycle often leads to the highest
@ /ts of : accuracy inference
Backward rror

Strawberry labeled data! | |

Model weights

INFERENCE |

Forward
—p “Bicycle"?

small NN

Accuracy

LI

Traditional Model

n
>

277777 Data set size
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www.intelai/technology SPEED UP DEVEI.UPMENT

using open Al software

MACHINE LEARNING DEEP LEARNING

TOOLKITS 7600 ©penVIN® NNAUTA
App

O Open source, scalable, and
0 developers extensible distributed deep learning
6

platform built on Kubernetes (BETA)

lIBRARIES Python R Distributed T+ Intel-optimized Frameworks
* Scikit- « Cart * MlLib (on Spark) # * * And more framework
Data learn *Random * Mahout TensorFlow L Caffe2 @ ONNX optimizations underway
‘ ‘ scientists * Pandas Forest . ¢ am B including PaddlePaddle*,
* NumPy + 21071 @Xnet O PyTorch Blgm] Chainer*, CNTK* & others
KERNELS . In.tel@’_ Intel® Data Ana_\lvtics Intel® Math Kernel 3
Lib Distribution Acceleration Library | iprarv for Deep Neural . nGl'Clph
forary for Python® DAAL Networks (MKL-DNN)
0 deVelOpel’S Intel distribution High performance machine ] Open'source gompiler for dgep [eamjng model
optimized for learning & data analytics Open source DNN functions for computations optimized for multiple devices (CPU, GPU,
machine learning library CPU / integrated graphics NNP) from multiple frameworks (TF, MXNet, ONNX)

Bs -235'.,'.
mi .L»;w‘. : ‘:v_.
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http://www.numpy.org/
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/package=e1071
https://spark.apache.org/mllib/
https://mahout.apache.org/
http://www.intel.ai/technology
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FAST EVOLUTION OF Al CAPABILITY ON INTEL" XEON" PLATFORM

Grantley Purley
| | | |
Haswell (HSX) Broadwell (BDX) Skylake (SKX) Cascade Lake (CLX)
E5 V3 E5 V4 SP SP
(Scalable Processor) (Scalable Processor) Intel®
Deep Learning
E.g. Gold 8 80 E.g. Gold 8 80 Boost

Gold 5 17 Gold 5 18
Silver 4 10

Intel® AVX2 Intel® AVX512 Intel® AVX512 VNNI
(256 bit) (512 bit) (512 bit)
FP32, INTS, ... FP32, VNNI INTS, ...

2015 2016




Intel® Deep Learning Boost is a new set of AVX-512
instructions designed to deliver significant,

more efficient Deep Learning (Inference) acceleration on
second generation Intel® Xeon® Scalable processor
(codename “Cascade Lake”)




DEEP LEARNING FOUNDATIONS

Matrix Multiplies are the foundation of many DL applications

e Multiply a row*column values, accumulate into a single value

Traditional HPC and many Al training workloads use floating point

* Massive dynamic range of values (FP32 goes up to ~27128)
Why INT8 for Inference?

Clint32]
* More power efficient per operation due to smaller multiplies B

* Reduces pressure on cache and memory subsystem

Matrix Multiply
AxB=C

* Precision and dynamic range sufficient for many models
What's different about INT8?

*  Much smaller dynamic range than FP32: 256 values

*  Requires accumulation into INT32 to avoid overflow
(FP handles this “for free” w/ large dynamic range)




CONVOLUTION = MULTIPLY - ADD OP.

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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REDUCED PRECISION FOR INFERENCE

Data types for different phases of deep learning

C e I IO S e oo

* Inference: fp32,fp16, int8, ... FP32 -3.4x10% ~ +3.4 x 10% 1.4 x 104
FP16 -65504 ~ +65504 5.96 x 108
INT8 -128 ~ +127 1
i nt8 VS fp3 2 INT8 has significantly lower precision and dynamic range than FP32

» Better performance (instruction throughput)

* Low memory consumption (high bandwidth, better cache usage)

* Acceptable accuracy loss




WHAT IS VECTOR NEURAL NETWORK INSTRUCTIONS (VNNI) o

intl6

‘ int32

« U8&S8->532MAC
I

* * * *
VPMADDUBSW - VPDPBUSD w
+—

vemappwp | * *

1 1

\/

________ o

VPADDD : luj

AVX-512_BW(Xeon Skylake) VNNI(Xeon Cascadelake)

VNNI can boost INT8 MAC from 1 33x of FP3Z with AVX 512_ BW to 4x of FP32 wh|Ie |so-frequency




INTEL" DEEP LEARNING BOOST
OPTIMIZING Al INFERENCE e e

In a given clock cycle

1st gen Intel® Xeon®
Scalable processor
without Intel® DL Boost

FP32
32 [ vpmadd23tps —» 07T
S l ‘ Port0 Port5
FP32
h FMA FMA

INPUT
1t gen Intel® Xeon® INT8 OUTPUT
Scalable processor h vpmaddubsw > \T16 S
without Intel® DL Boost INPUT C — vpmaddwd —>
INT32 VEERRL OUTPUT
INT8 colr;\llsTTlLf\jNT | m—  — P - ' INT32
h ecumulate T R
INT32
NEW
INPUT
INT8
2 gen Intel® Xeon® h OUTPUT
Scalable processor L vpdpbusd INT32
with Intel® DL Boost UL INPUT — —
l INT8
Accumulate

INT32




S0 WHAT?

AVX512_VNNI is a new set of of AVX-512 instructions to boost
Deep Learning performance

= VNNI includes FMA instructions for:
— 8-bit multiplies with 32-bit accumulates (u8 x s8 = s32)
— 16-bit multiplies with 32-bit accumulates (s16 x s16 = s32)

» Theoretical peak compute gains are:
— 4x int8 OPS over fp32 OPS and 2 memory requirements
— 2xint16 OPS over fp32 OPS and 2 memory requirements

» |ce Lake and future microarchitectures will have AVX512 VNNI

S T

b N
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ENABLING INTEL" DL BOOST ON CASCADE LAKE
THEORETICAL IMPROVEMENTS: FP32 US. INT8 & DL BOOST

Workloads

UPT04X BOOST IN MAC/CYCLE . . ~

Topologies

r
.

UPTO 4 IMPROVED PERFORMANCE | WATT g o

Tensor

DECREASED MEMORY BANDWIDTH Caffe 44 PaddlePadde

. - L Frameworks )
IMPROVED CACHE PERFORMANCE " Intel® MKL-DNN Libraries
UP NEXT: MICROBENCHMARKING WITH INTEL" MKL-DNN'S Intel® Processors

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual
performance.. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully eva\uatlng your contemp\ated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
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INTEL" AT OPTIMIZED FRAMEWORKS

Popular DL Frameworks are now optimized for CPU!

CHOOSE YOUR FAVORITE FRAMTYTNOQORN

Cafte

See installation guides at ai.intel.com/framework-optimizations/

More under optimization: 2 Caffe? PYTORcH [EELEEEES’
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Al (ML &DL) SUFTWARE STACK FOR INTEL" PROCESSORS

OPENVINO™ TOOLKIT [estaerics
Bigl 1"
PYTHORCH

+U+’ Caffe? F

Xnet Tensor

Intel MKL

Intel MKL-DNN

Intel Processors

Deep learning and Al ecosystem includes edge and datacenter applications.
* Open source frameworks (Tensorflow*, MXNet*, PyTorch* PaddlePaddle*)
* Intel deep learning products (, BigDL, OpenVINO™ toolkit)

* In-house user applications

Intel® MKL and Intel® MKL-DNN optimize deep learning and machine learning

applications for Intel® processors :

* Through the collaboration with framework maintainers to upstream changes
(Tensorflow*, MXNet*, PyTorch, PaddlePaddle?*)

» Through Intel-optimized forks (Caffe*)

* By partnering to enable proprietary solutions

Intel® MKL-DNN is an open source performance library for deep learning
applications (available at https://github.com/intel/mkl-dnn)

» Fast open source implementations for wide range of DNN functions
* Early access to new and experimental functionality
* Open for community contributions

Intel® MKL is a proprietary performance library for wide range of math and
science applications

Distribution: Intel Registration Center, package repositories (apt, yum, conda,
pip), Intel° Parallel Studio XE, Intel® System Studio


https://software.intel.com/en-us/articles/optimization-notice/
https://github.com/intel/mkl-dnn

INTEL™ MATH KERNEL FOR DEEP NEURAL NETWORKS i .o

For developers of deep learning frameworks featuring optimized performance on Intel hardware

Distribution Details
= Open Source
» Apache* 2.0 License

= Common DNN APIs across all Intel hardware. sithub.com/01org/mkl-dnn

= Rapid release cycles, iterated with the DL community, to
best support industry framework integration.

» Highly vectorized & threaded for maximal performance,
based on the popular Intel® Math Kernel Library.

Direct 2D ” Local response Rectified linear unit Maximum
Examples- ; normalization neuron activation : Inner product
. (
Convolution | (LRN) (ReLU) pooling

Accelerate Performance of Deep Learning Models
c\ w ‘
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INTEGRATION WITH THE POPULAR AI/ML
FRAMEWORK
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NEURAL NETWORKS

Use biology as inspiration for math model

4>

Neurons: 7
- - IAONAEKY
= Get signals from previous neurons % 40,:

\/
= Generate signal (or not) according to inputs ‘H&Hﬁ

= Pass that signal on to future neurons

By layering many neurons, can create complex model
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MAIN TENSORFLOW API CLASSES

Graph

= Container for operations and tensors
Operation

= Nodes in the graph

= Represent computations

Tensor

= Edgesin the graph

= Represent data

jﬁ,;., TR L L R
l:ml"lﬂ q R BTN B )
e L . Sy \h" L : k Ay ) :
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READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

Some form of computation

/ transforms the inputs

Data flows activation
into neuron

from previous funCtion
layers

The neuron outputs
the transformed data

_— — — s
e N =% ) \ 1"- .\
I m: 1 D N
U
‘ Hlb 'y Lo\ Y AN
: 3 . o = X » LN
T ey 4 ” & % !
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COMPUTATION GRAPH

.- Nodes represent computations

\
‘---
7’
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COMPUTATION GRAPH

Edges represent numerical data
- flowing through the graph

-

4-----
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tf.constant () creates an Operation that returns a fixed value
tf.placeholder () defines explicit input that vary run-to-run

>>> a tf.placeholder (tf.float32, name=“inputl”)
>>> ¢ = tf.add(a, b, name="my add op”)

e S

default)

oS TN EEN BN NN BN BN EEN BN BN NN BN BN BN BN B By,
AN . . NN S NN BN NN N SN SN S S .
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We use a Session object to execute graphs.
Each Session is dedicated to a single graph.

>>> sess = tf.Session()

Session sess

Variable values:

,——————————————§
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ConfigProtois used to set configurations of the Session object.

>>> config = tf.ConfigProto(inter op parallelism threads=2,
intra op parallelism threads=44)

>>> tf.Session(config=confiq)

Session sess

default:
‘ ’a\

Variable values:

,——————————————§
| Y ————
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placeholders require data to fill them in when the graph is run

We do this by creating a dictionary mapping Tensor keys to numeric values

>>> feed dict = {a: 3.0, b: 2.0}

defaul t\

Session sess

Variable values:
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We execute the graph with sess.run (fetches, feed dict)

sess.run returns the fetched values as a NumPy array

>>> out = sess.run(d, feed dict=feed dict)

\

O defaul;:
a
N

Session sess

Variable values:

,——————————————§

run ()
fetches: d
feed dict: feed dict

feed dict: {a: 3.0, b: 2.0}
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TWO-STEP PROGRAMMING PATTERN

1. Define a computation graph

ﬁ

2. Runthe graph



https://software.intel.com/en-us/articles/optimization-notice/

INTEL” TENSORFLOW™ OPTIMIZATIONS

1. Operator optimizations: Replace default (Eigen) kernels
by highly-optimized kernels (using Intel® MKL-DNN)

2. Graph optimizations: Fusion, Layout Propagation

3. System optimizations: Threading model
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OPERATOR OPTIMIZATIONS

Examples
In TensorFlow, i

computation graph is a
data-flow graph.

MatMul

Weights
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OPERATOR OPTIMIZATIONS

Replace default (Eigen) kernels by

highly-optimized kernels (using
Intel® MKL-DNN) Forward  |Backward

Conv2D Conv2DGrad
Intel® MKL-DNN has Optimized a set Relu, TanH, ELU RelLUGrad, TanHGrad,
of TensorFlow operations. ELUGrad
Library is open-source MaxPooling MaxPoolingGrad
(https://github.com/intel/mkl- R #ivgFoolingGrad
dnn) and downloaded BatchNorm BatchNormGrad
automatically when building LRN LRNGrad

TensorFlow. MatMul,

Concat
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GRAPH OPTIMIZATIONS: FUSION

Conv2DWithBias

BiasAdd

Before Merge After Merge
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GRAPH OPTIMIZATIONS: LAYOUT PROPAGATION

Converting to/from

optimized layout can be
less expensive than Convert
operating on un-
optimized layout.

Filter

Convert Convert

MklConv2D MklConv2D

All MKL-DNN operators
use highly-optimized
layouts for TensorFlow
tensors.

MkIReLU

Convert

Shape

After Layout Propagation

‘\*;
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DATALAYOUT HAS A BIG IMPACT

« Continuous access to avoid gather/scatter
* Have iterations in inner most loop to ensure high vector utilization
* Maximize data reuse; e.g. weights in a convolution layer

Overhead of layout conversion is sometimes negligible, compared with
operating on unoptimized layout

Channel based
21 18 - 1 . 8 92 (NCHW)
21 18 32 6 3
1 8 92 37 29 44 21 8 18 | 92 | . 1 11 . Pixel based
(NHWC)

40 11 9 22 3 26
for i= 1 to N # batch size

23 | 3 47 29 88 1 for j = 1 to C # number of channels, image RGB = 3 channels
for k =1 to H # height
for 1 = 1 to W # width
dot_product( ..)
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MORE ON MEMORY CHANNELS: MEMORY LAYOUTS

Most popular memory layouts for image recognition
are nhwc and nchw

= Challenging for Intel processors either for vectorization or
for memory accesses (cache thrashing)

Intel MKL-DNN convolutions use blocked layouts
= Example: nhwc with channels blocked by 16 — nChw16¢

= Convolutions define which layouts are to be used by other
primitives

= Optimized frameworks track memory layouts and perform
reorders only when necessary

y

nChw16c
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SYSTEM OPTIMIZATIONS: LOAD BALANCING

TensorFlow graphs offer opportunities for parallel
execution.

Threading model

1. inter_op_parallelism threads = max number
of operators that can be executed in parallel

2. intra_op_parallelism_threads = max number
of threads to use for executing an operator

3. OMP_NUM_THREADS = MKL-DNN equivalent of
intra_op_parallelism_threads

Convert Convert

MklConv2D

MklReLU
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PERFORMANGE GUIDE

tf.ConfigProto is used to set the inter op parallelism threads and
intra op parallelism threads configurations of the Session object.

>>> config = tf.ConfigProto()
>>> config.intra op parallelism threads =

>>> config.inter op parallelism threads =
>>> tf.Session(config=configqg)

https://www.tensorflow.org/performance/performance guidetttensorflow with intel mkl dnn

TensorFlow ™ nstall APIFLE oy ter Community - GITHUB
GET STARTED PROGRAMMER'S GUIDE TUTORIALS:
Optimizing for CPU Comtents
e General best practices
Performance Guide o . . i . i Inpist plping
Inpiat PApsing Parformance Gulds CPUs, which includes Intel® Xeon Phi™, achieve optimal performance when TensorFlow is built from source with all of o’:;“?z‘am:
High-Parformance - the instructions supported by the target CPU. Deta formats
EASChEAY Beyond using the latest instruction sets, Intel® has added support for the Intel® Math Kernel Library for Deep Neural Comenaon fused Ops

Fiued Point Quantization Matuwnrke (intal® LKL NUK ta TanearElaw Whils tha nama ie nat samalataly seearats thacs antimizatinne ars aftan RN Performance
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PERFORMANGE GUIDE

Maximize TensorFlow* Performance on CPU: Considerations and Recommendations for Inference
Workloads: https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-
considerations-and-recommendations-for-inference

Example setting MKL variables with python os.environ

.environ["KMP_BLOCKTIME"] = "1"
.environ["KMP AFFINITY"] = "granularity=fine,compact,1,0"

.environ["KMP_SETTINGS"] = "O"
.environ["OMP_NUM THREADS"] = “56"

Tuning MKL for the best performance

This section details the different configurations and environment variables that can be used to tune the MKL to get Intel Tensorﬂow* |nsta " g u|de |S aval |a ble 9

optimal performance. Before tweaking various environment variables make sure the model is using the NCHW R

( channels_first ) data format. The MKL is optimized for NCHW and Intel is working to get near performance parity httDS . //SOftware, |ntEI ,Com/en-

when using NHWC . . . « . «
us/articles/intel-optimization-for-tensorflow-

MEKL uses the following environment variables to tune performance:

installation-guide

* KMP_BLOCKTIME - Sets the time, in milliseconds, that a thread should wait, after completing the execution of a
parallel region, before sleeping.

+ KMP_AFFINITY - Enables the run-time library to bind threads to physical processing units.

* KMP_SETTINGS - Enables (true) or disables (false) the printing of OpenMP* run-time library environment variables
during program execution.

* OMP_NUM_THREADS - Specifies the number of threads to use.
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DISTRIBUTED TENSORFLOW™ COMPARE

Averages All the Gradients Each Averages Portion of the Gradients
With LR
. q Parameter
: or
Tensorflow with —

Parameter Server

The parameter server model for distributed training jobs can be configured with different ratios of parameter servers to workers, each with different performance profiles.

©)] i SR
No
Parameter Worker C Wors

—

Uber’s open source Distributed
training framework for TensorFlow
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DISTRIBUTED TRAINING WITH HOROVOD™ MPI LIB

Interconnect Fabric (Intel® OPA or Ethernet)

Distributed Deep Learning Training Across Multiple nodes
Each node running multiple workers/node
Uses optimized MPI Library for gradient updates over network fabric
Caffe — Use Optimized Intel® MPI ML Scaling Library (Intel® MLSL)
TensorFlow* — Uber horovod MPI Library

Intel Best Known Methods: https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/
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HOROVOD: HOW TO CHANGE THE CODE

To use Horovod, make the following additions to your program. This example uses TensorFlow.

Usage

1. Run hvd.init() .

2. Pin a server GPU to be used by this process using config.gpu_options.visible device list . With the typical setup of
one GPU per process, this can be set to local rank. In that case, the first process on the server will be allocated the first
GPU, second process will be allocated the second GPU and so forth.

3. Scale the learning rate by number of workers. Effective batch size in synchronous distributed training is scaled by the
number of workers. An increase in learning rate compensates for the increased batch size.

4. Wrap optimizer in hvd.Distributedoptimizer . The distributed optimizer delegates gradient computation to the original
optimizer, averages gradients using allreduce or allgather, and then applies those averaged gradients.

5. Add hvd.BroadcastGlobalVariablesHook(@) to broadcast initial variable states from rank 0 to all other processes. This is
necessary to ensure consistent initialization of all workers when training is started with random weights or restored from
a checkpoint. Alternatively, if you're not using MonitoredTrainingSession, you can simply execute the

hvd.broadcast_global variables op after global variables have been initialized.

6. Madify your code to save checkpoints only on worker 0 to prevent other workers from corrupting them. This can be
accom plished by pass'\ng checkpoint_dir=None to tf.train.MonitoredTrainingSession if hvd.rank() != 0.

Guidelines and example on github:

Example (see the examples directory for full training examples):

import tensorflow as tf

import horovod.tensorflow as hvd httDS//ElthubCom/hOrOVOd/hOI’OVOd#Usa,C.{e

# Initialize Horovod °
. ini ) ItHu
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HOROVOD 101 QUICK START :

import horovod.tensorflow as hvd
hvd.init()

#Scale the optimizer
opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

hooks = [hvd.BroadcastGlobalVariablesHook(9) ]

# Save checkpoints only on worker © to prevent other workers from

corrupting them.
checkpoint_dir = '/tmp/train_logs' if hvd.rank() == @ else None
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HOROVOD™ FOR MULTI-NODE

from Parameter server (PS)

NP=4

PER_PROC=10
HOSTLIST=192.168.10.110
MODEL=inception3

BS=64

BATCHES=100

INTRA=10

INTER=2

/usr/1ib64/openmpi/bin/mpirun --allow-run-as-root -np $NP -cpus-per-proc $PER_PROC -
map-by socket -H $HOSTLIST --report-bindings --oversubscribe -x LD _LIBRARY_PATH python
./tf _cnn_benchmarks.py --model $MODEL --batch _size $BS --data_format NCHW -
num_batches $BATCHES --distortions=True --mkl=True --local parameter _device cpu -
num_warmup_batches 10 --optimizer rmsprop --display every 10 --kmp blocktime 1 -
variable update horovod --horovod device cpu --num_intra threads $INTRA -
num_inter_threads $INTER --data_dir /home/tf imagenet --data_name imagenet
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WHITE PAPER @

SCALING TENSORFLOW™

Al Products Group, Intel Corporation
Customer Solutions Technical Enabling

Best Practices for Scaling Deep Learning Training
and Inference with TensorFlow* On Intel® Xeon®
Processor-Based HPC Infrastructures

Table of Contents

There is way more to consider when
striking for peak performance on
distributed deep learning training.:

https://ai.intel.com/white-papers/best-known-methods-for-
scaling-deep-learning-with-tensorflow-on-intel-xeon-
processor-based-clusters/
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INTEL® MACHINE LEARNING SCALING LIBRARY [MLSL)

Distributed Deep Leaning Requirements:

v'Compute/communication overlap

v'Choosing optimal communication algorithm

v'Prioritizing latency-bound communication
v'Portable / efficient implementation

v'Ease of integration with quantization algorit
v'Integration with Deep Learning Frameworks

Data Parallelism Model Parallelism

Output or Partiol outputs or
Input dato Weights activations ctivotions Output or
Weights tivatio
or model Weights C
or model
EE  EEE =N mmE

Alltoall

N

FORWARD
PROPAGATION

AmMm=<rPrr

Allreduce

=

BACK
PROPAGATION

Alltoall

Communication dependent on work partitioning strategy
Data parallelism = Allreduce (or) Reduce_Scatter + Allgather
Model parallelism = AlltoAll

hms

Hybrid Parallelism

bozs ol 7(.:‘.-'.11:',} Numerous DL  spak' theano , ‘i 2 g
~ ® Frameworks Caffe « loth CNTK
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daal4py/kmeans-distr.ipynb

1) Performs a pixel-wise Vector Quantization (VQ) using K-Means
2) Implemented the domain decomposition according to:
» d4p.num_procsl)
= d4p.my_procid()
3) Using the distributed algorithm from Daal4Py
» d4p.kmeans_init(n_colors, method="plusPlusDense", distributed=True)

4) What is the meaning of d4p.daalinit() & d4p.daalfini()?

5) How does threading compare to multiprocessing in terms of performance?
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Distributed K-Means Demo Summary

° Eac h p rocess (M P I ra n k) get’s a : Jupyter kmeans-distributed-solution (unsaved changes) A ogou

. File Edit View Insert Cell Kemel Help Trusted |Py1hon3 (o]
different chunk of data + = [aln]s[v] D 8[c]ee (=

In [16]: !mpirun -prepend-rank -genv I_MPI_DEBUG=5 -n 2 python -u ./runme.py

[e] [e] MPI startup(): libfabric version: 1.7.@al-impi
[e] [e] MPI startup(): libfabric provider: sockets
k

] 1
* Only process #0 reports results 5] 18751 SR e

] 0

] 1

[B] [a MPI startup(): 15265 ip-172-31-4-219.eu-central-1.compute.in
rna

[0] [a MPI startup():
ternal {1,3}

* Inference is using the same routines i e
as training with O maximum
iterations and centroid assignment

15266 ip-172-31-4-219.eu-central-1.compute.in

In [17]: img = Image.open
i

Oout[17]: <matplotlib.image.AxesImage at ex7fa

* There is no oversubscription since
DAAL only sees the cores “owned”
by the corresponding MPI rank

<\\
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benchmarks/tf_bench.sh

Generating tralning model
Initializing graph T fl *
Running wWaIrm up EEr]E;()IF ()\A/
Done warm up

Img/sec total loss

images/se 7 +/— 0.0 (jitter = 0.0}

images/se +/— 0.0 (jitter
images/se +/— 0.0 (jitter

images/sec: .8 +/- 0.0 (jitter

Generating training model

Initializing graph

Running warm up

Done warm up

Step Img/sec total loss

1 images/s 17.3 .0 (jitter
images/s 17.6 (jitter
images/s 17.6 ) (jitter
images/s 17.7 ) (jitter

fifE8$$$E Executive Summary FEF§FFEEE

Environment Network
Default resnet50
Optimized | resnet50 |

i il
Average Intel Optimized speedup = 5X
i il

s Heconme
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Tensorflow/tf basics/cnn_mnist.ipynb

conv2 feature maps
convl feature maps 14x14x32
28x28x16

pool2 feature maps FC1: 128
pooll feature maps [ ]

14x14x16 DL-'i 10

convolution max-pool convolution max-pool Full connection " Full connection

(k=5, F=16, s=1) (k=2, 5=2) (k=5, F=32, s=1) (k=2, 5=2)

Source:https://www.easy-tensorflow.com/tf-tutorials/convolutional-neural-nets-cnns

* Implementation of a simple Convolutional Neural Network in TensorFlow with
two convolutional layers, followed by two fully-connected layers at the end

TR o R AN
imsisconnme O
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Tensorflow/tf basics/cnn_mnist.ipynb

Let's try to run this example a observe the performance

Standard Python and Tensorflow installation

source activate python-3.6
pip show tensorflow | grep Location
- useful to locate the TF installation for see the library linked: 1ldd $Location/tensorflow,
rm -rf mnist_convnet model/*
Run the sample: time python cnn_mnist.py

Intel Python and Optimized Tensorflow

source activate intel-py
pip show tensorflow | grep Location
- useful to locate the TF installation for see the library linked: 1ldd $SLocation/tensorflow,
rm-rf mnist_convnet_model/*
export export MKLDHMN WVERBOSE=1

R
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Tensorflow+Horovod/cnn_mnist-hvd.ipynb

Delete the checkpoint if needed, otherwise TF won't train any further

- rm -rf checkpoints

Let's start changing the numer of MPI tasks, what performance difference
would you expect?

- mpirun -prepend-rank -genv OMP_NUM_THREADS=2 -genv I MPI DEBUG=5 -n 2 python -u cnn_mnist-hvd.py

- mpirun -prepend-rank -genv OMP_NUM_THREADS=2 -genv I_MPI_DEBUG=E -n 4 python -u cnn_mnist-hvd.py

- check the size of the dataset:
- 1s -lha ~/.keras/datasets/

Intel Python and Optimized Tensorflow

- source activate hvd-impi
- pip show tensorflow | grep Location

- useful to locate the TF installation for see the library linked: ldd $Location/tensorflow/libtensorflow...so
- rm-rf /ftmp/*
- export export MKLDNN_VERBOSE=1
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Tensorflow+Horovod/cnn_mnist-hvd.ipynb

1) How to initialize Horovod and why is it necessary?

2) Why is it necessary to adept the learning rate with larger batches?
3) How can you dynamically adept the learning rate?

4) How to identify rank #1 (0)?

5) Why is it necessary to adept the number of training steps according to the
number of workers / larger batches?

6) How can you dynamically adept the number of training steps?

7) How is the single process performance vs 2 ranks vs 4 ranks?
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MNIST CNN Horovod Demo Summary

Horovod initializes the MPI
communication underneath and
therefore defines rank() and size()

In order to reduce the Time To
Train with multiple workers,
therefore increasing the batch size,
the learning rate needs to scale

Same for the # of steps for training

4 ranks can be faster since less
threading efficiency is required in
small convolutions

: Jupyter 04_mnist_deep_horovod_Solution Last Checkpoint a few seconds ago (autesaved)

Edit

View Inset  Cell  Kemal  Help

B+ | » &0 4 + MHRin B C Coe M

y_conv, keep_prob = deepnn(x)

# the Loss
en ropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y_conv)
_entropy = tf.reduce_mean(cross_entropy)
: #mutriply Learning rate by sranks due to the Larger global batch size

opt = tf.train.AdanOptimizer(le-4 * hvd.size())
opt = hvd.DistributedOptimizer(apt)

global_step = tf.train.get_or_create_global_step()

train_step = opt.minimize(cross_entropy, global_step-global_step

redr ession checkpoints - only rank o
= "graphs/horoved” if hvd.rank() == © else None

by
pitStepHook(las
ggingTensorHook(t

ingSession(checkpoint_dirscheckpoint_dir, hooksshooks) as mon_sess:
top():

ext_batch(5@)

ep, feed dict=(x: batch[@], y_: batch[1], keep prob: @.5})

mon,_ X
if hvd.rank() == :
print('TIT: %g' % (time.time() - time_start))

HFO: tensorflow:Create CheckpointSaverHook.
INFQ: was finalized

er=108),



https://software.intel.com/en-us/articles/optimization-notice/




