»We explore a possible alternative to PCA-based PSF estimation for direct imaging of exoplanets which works by learning causal

pixel-wise noise models.«

Half-Sibling Regression meets Direct Imaging: **A Causal Approach for Uncovering Exoplanets**

Timothy D. Gebhard^{1,2}, Sascha P. Quanz³, Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems | ²Max Planck ETH Center for Learning Systems | ³Institute for Particle Physics & Astrophysics (ETHZ)

Corresponding author: tgebhard@tue.mpg.de

Detecting Exoplanets

Transit Photometry (1)

Identify periodic "dips" in the light curves of stars ($\rightarrow e.g.$, Kepler)

Astrometry / Radial Velocity 2

Observe periodic changes in star position / redshift ($\rightarrow e.g.$, Gaia)

Direct Imaging (3)

Capture photons from planet, mostly in the infrared ($\rightarrow e.g.$, NACO/VLT)

()

Angular Differential Imaging

Angular Differential Imaging (ADI) is an observation **technique** first introduced by Marois *et al.* (2005):

Key idea: **turn off the field derotator** of the telescope. **De-rotating** every frame by its parallactic angle and averaging will then reduce quasi-static speckle noise.

PCA-based PSF subtraction

Half-Sibling Regression

Assume we are interested in the latent quantity $\mathbf{Q} \perp \mathbf{X}$:

Application to Direct Imaging

Current Questions

For every pixel Y in the

De-rotate

Average

Schölkopf et al. (2016) have shown that by regressing Y onto X_i, one can learn an estimate for f(N), allowing us to reconstruct **Q** (up to a constant) as $\hat{\mathbf{Q}} = \mathbf{Y} - \mathbf{f}(\mathbf{N})$.

ROI, we learn a model **m**: $Y = m(X_i) + \varepsilon$

Idea: Use m(X) as an estimate for the systematics.

 $\rightarrow \varepsilon$ is the estimated planet signal in pixel Y!

Advantage: Lots of freedom in choosing m (and X)! \rightarrow Reduce self-subtraction, include time domain, ... ?

• Which pixels should we use? • How to define the exclusion region?

Machine Learning

Predictor Selection

• Which model class should we use? • How to split for training / test?

Evaluation

• Physical metrics vs. ML metrics? • How to quantify self-subtraction?

