
Dynamo-driven stellar magnetic activity is one of the most problematic sources 
of contamination of the exoplanet signal, because of the stochastic behaviour of 
its manifestations, such as starspots and faculae. 

Photometric and spectroscopic spurious signals with a similar amplitude as the planetary signal 
hamper the detection and characterization of Earth-like planets.

Machine-learning Gaussian processes (GP) regression algorithms have become a standard 
approach to tackle at least part of this issue. The flexibility of this method allows the treatment of 
stellar noise as correlated signal. 

Our team is active in the application of this technique to exoplanet detection and characterization.
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With GP, the stellar activity signal is treated as correlated noise. 

●  Photometry can be corrected for both occulted and non-
occulted starspots.

●  Long-term photometric variations can be used to reduce the 
impact of starspots on transmission spectra (e.g. Alam+2018, 
Bruno+2019, submitted).

●  Stellar activity can be corrected altogether with instrumental 
effects (Gibson+2014). 

●  GP can be included in pipelines for space-borne observatories 
(Aigrain+2016).

●  Well-tested kernels (e.g. squared exponential/Matérn) are able 
to represent starspot evolution, while traditional methods 
require the data set to be cut in a few days-long segments 
(e.g. Lanza+2009, Bruno+2016).

However, GP cannot find for us important physical 
constraints for the modelling of the host star. An example is the 
starspot-to-faculae ratio, which is crucial to understand the stellar 
baseline level and therefore the amount of transit depth 
correction.

Impact on planetary transits

In-transit and out-of-transit starspot signals lead to incorrect 
transit depth measurements (up to a few thousand ppm).

       Measurements of planet radii and atmospheric absorption 
features are affected (e.g. Alonso+2008, Silva-Valio+2010, 
Pont+2008, McCullough+2014 were among the first to report this 
problem).

Impact on radial velocities (RV)

Spots and faculae have different spectral features from the rest of 
the star. As the star rotates, these are Doppler-shifted to the 
observer and introduce spurious RV variations (or RV jitter) 
possibly larger than the planetary signal (e.g. Queloz+2009).
      
      The detection of planets around young and/or active stars can 
be challenging, as well as their mass determination.

Radial velocity model curve: K is 
the radial velocity semi-amplitude.

●  Keplerian signals produced by 
one or  more planets are 
affected by stellar jitter coming 
from stellar spots, plages and 
supergranulation (~1m/s 
amplitude, Meunier+2019).

●  GP are used in our GAPS 
collaboration to filter the 
stellar signal out and 
determine reliable planetary 
masses.

●  Quasi-periodic covariance 
kernels are used to represent 
the stellar activity signal 
(Haywood+2014, 
Rajpaul+2015).
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●  Spectroscopic activity indices or photometry can be coupled 
to RV to get better constraints on the stellar activity signal (e.g. 
Malavolta+2018).

●  Satisfying parametric formulations that connect 
photometric and activity-induced RV signals are still 
lacking (e.g. Aigrain+2011, Haywood+2014).

We’d like to have a chat about
classification algorithms to recognize 
features in time series and the plausible 
performance of other machine learning 
algorithms to tackle stellar activity signals. 
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