
Giuseppe Longo
DATA SCIENCE INITIATIVE
University of Napoli Federico II - Italy
CINI Consortium
longo@na.infn.it 

ARTIFICIAL INTELLIGENCE IN ASTRONOMY
I.e. Machine Learning  successes and problems 

Special Thanks to the group:

Massimo Brescia
Stefano Cavuoti
Michele delli Veneri
Giuseppe Longo
Oleksandra Razim
Giuseppe Riccio
Olena Torbaniuk

+ & Many great students

mailto:longo@na.infn.it


® Fraunhofer FOKUS

Personal considerations
● Artificial Intelligence is just 

a buzzword (recently 
resurrected for marketing 
purposes)

● Deep learning is a subset of 
machine learning

● Machine learning, data 
mining, KDD, and statistical 
pattern recognition are 
different "nuances" of the 
same stuff

Computing 
infrastructures

ASTROINFORMATICS



The trinity of AI/ML
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Courtesy of A. Anandkumar
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For "money rich" communities coping with "data rich" problems, 
computing is NOT YET an unsolvable problem (SKA 2 ???)

1. Computing



The astroinformatics field is exploding (2003 vs 2019)

2003 - Special issue of the International Journal of Neural Networks on "Neural Network 
Analysis of Complex Scientific Data", Eds. Tagliaferri R., Longo G., D'Argenio B.
2010 - N.M. Ball and R.J. Brunner, 2010, arXiv:0804.3413

2019 - Focus Issue on Machine Learning in Astronomy, Publications of The Astronomical 
Society of the Pacific, Eds. Longo G., Merenyi E. & Tino P. 
2019 - Papers presented at "Astroinformatics 2019", Pasadena July
2019 - review (in press)

WARNING: does not cover "Bayesian" and similar approaches.



Task 2003 2003-2009 2009-2019 superv. Unsuperv. DL Notes

S/G separation yes Yes yes Y y ? ANN, CNN

Galaxy properties 
            Morphology
            Properties
            SFR
            Evolution

yes yes yes Y y y ANN, SVM, PPS; CNN, 

Spectral classification yes yes yes Y y y ANN, SVM, RF

Image segmentation yes yes y y y ANN, GAN

Noise removal yes yes Y y no SVM, ANN

Photometric redshifts (galaxies) yes Yes yes Y y y SVM, ANN, RF, CNN, KNN,  + other 

Variable objects yes Yes yes y y y SVM, DT, ANN, RF, CNN

Stellar evolution models yes yes y n n ANN

Outlier detection Yes yes Y y y ANN, RF, CNN

Search for AGN Yes yes Y y SVM, ANN, CNN

TASKS AND SCIENCE CASES - I



Task 2003 2003-2009 2009-2019 superv. Unsuperv. DL Notes

Solar activity yes yes Y n n

Galactic studies
        Interstellar Medium
        Open clusters
        Stellar associations

yes y y Y GAME, ANN, GNG, DBSCAN, 

Planetary studies
        Surface morph

yes yes Y Y n SVM, ANN, ADABOOST, CNN

Asteroids yes Y Y CNN

Exoplanets yes y y y DBSCAN, ANN

Gravitational lensing yes y y GAN, CNN

Dark matter yes Y Y GAN

Magnetic fields yes Y ANN

Instrumentation
Monitoring & control

yes Y Y Y SVM, ANN, expert systems

Data reduction and data logs yes Y Y ANN



Algorithms: open problems 

● How to evaluate performances 
statistical indicators are not always unambiguous

● How to evaluate effects of errors (we need PDFs)

● Not all features are significant for the task, hence the need 
to reduce dimensionality (most relevant, all-relevant, Data 
Driven Approach?)

● Proper coverage of OPS:  
how to control biases in the training set

● Missing data are still a problem

● How to minimise catastrophic outliers



Summarising the work by many:

Massimo Brescia, Stefano Cavuoti
& Valeria Amaro, Alex Razim, Giuseppe Riccio, Michele delli Veneri and 
others.

Photo-z as a template case of 
supervised ML

● More than 220 papers in the last 10 years

● Different surveys (almost all), many 
wavelengths 

● Different coverages of OPS

● Wide range of science applications



In theory, ML photo-z methods are simple.....

 where:

Empirical methods use a subset of the objects (TRAINING SET) for which the 
spectroscopic redshifts (the  target) are known, to infer the mapping function f

Performances are then evaluated on a second disjoint dataset (TEST SET) for which the 
target is known and which has not been used during the training (BLIND TEST)

Usually accurate, no assumptions on underlying physics, almost independent on zero 
points, photometric calibrations, etc.

They are limited to the portion of the parameter space covered by the training set. 
Many problems in dealing with errors
 

Use a set of "accurate" templates to infer the hidden function f which maps 
the vector space X onto the scalar z

Is the vector space defined by the input features and z is the target function



Salvato, Hoyle 2018



DATA RICH REGIME (large training set)

All methods have been applied: decision trees, random forest, SVM, SOM, 
MLP in different nuances, genetic algorithms, deep learning, etc...



MLPQNA LEMON
RF

BPZ Le-Phare More or less, 
different ML 
methods are 
equivalent 
and outperform 
alternative 
approachesE.g. Cavuoti, et al., MNRAS, 2016 on KiDS data



DATA RICH REGIME

ALL METHODS PERFORM WELL, BUT....

● FEATURE SELECTION
Modern digital surveys produce huge amounts of measured 
parameters (e.g. SDSS ca. 550, KiDS  more than 400, etc.) 

Merging more surveys makes the number of parameters explode.

Number of examples is and will be forcefully limited

different strategies to cope with it but no clear cut, 
unique solution....



FEATURE SELECTION
Finding optimal  number and combination of parameters for a given task

Increasing the number of parameters means that the density of training points (examples) decreases 
This leads to a loss in interpolation capabilities

At the same time the volume of an inscribing 
hypersphere of dimension d and with radius 0.5 
can be calculated as:

Figure shows how the volume of this hypersphere 
changes when the dimensionality increases:

The performance changes when the dimensionality increases, we 
have a peak and then a decrease, this leads to the importance of a 
“feature selection”
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Feature selection

● ● Preselection based on common 
sense or on the opinion of the 
experts

● Empirical (try all) → Most relevant
○ Forward selection
○ Data driven approach  

● All relevant



Traditional (empirical) approach: 
First selection of features based on expertise
Trial and error on different combinations

Hundreds of experiments
Very demanding in terms of time

Brescia et al 2013, ApJ, 772, 140 





A brute force approach (from K. Polsterer, Heidelberg, 2015)
QSOs from SDSS

One does not know a-priori which features are the most relevant
Use all 55 significant photometric features to select the most significant 4  

Best combination
umodel –gmodel
gpsf-rmodel
zpsf-rmodel
ipsf-zmodel

Best results are comparable to 
Brescia et al. 2014

Laurino et al 2011
Traditional feature selection 
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Photometric redshifts for SDSS QSO (From K. Polsterer)
PSF, Petrosian, Total magnitudes + extinction + errors ….. 585 features…. Let us find the best combination 
of 10, 11, 12 etc… using FEATURE ADDITION

For just 10 features ….. 1,197,308,441,345,108,200,000 combinations (therefore just add the most 
significant feature strategy)

You hit a plateau at  
10 features.

Accuracy twice better

These 10 features do 
not make sense to an 
astronomer 

(afterwards ... there 
might be some 
explanation)

Level achieved with 
human biases in 
feature selection

Level achieved by 
machines alone (D3)



● Same data set... 4250 features

● Method: KNN in GPU Implementation

● Greedy  forward selection strategy 

Return of the features, D'Isanto, Cavuoti  et al. 2018



An example of why these 
features are relevant.

Feature importance of some  
features in the Best10 set 
composed by magnitudes 
from neighbouring bands. 

The results are compared to 
the classic features using PSF 
magnitudes of the same 
bands. 

Based on the characteristics 
of the ugriz filters, the 
wavelengths indicating the 
start, centre, and end of the 
overlapping regions are used 
to overplot the positions of 
particular quasar emission 
lines using Eq. (2). 



In optically selected samples and in presence of large knowledge 
base, the photo-z problem is saturated by ca. 10 features whose 
nature strongly depends on the data (no transfer from one data set 
to the other)

Computationally intensive (extremely), and difficult (if not plain 
impossible) for large panchromatic heterogeneous surveys 

The Features which carry most of the information are not those 
usually selected by the astronomer but....

... astronomers prefer to understand the selected features (and if 
possible to associate them to physical properties)... 



Feature selection - All relevant 

Random 
Forest

Kursa & Rudnicki 2010, Journal of Statistical Software, 36, 11

Hara & Maehara 2016, Proceedings of NIPS 2016, Barcelona, Spain

Brescia 2018 Aims at finding tall the features 
with carry useful information for a 
given problem



DATA RICH REGIME

● Coverage of OPS (Biases in training set)
● The OPS is not uniformously covered by the Training set

● Do training and test set cover the same OPS?



75 x 170 SOM

Masters et al., 2015, APJ

COSMOS data (EUCLIDISED)  and converted to "pseudo-Euclid" photometric system: 
u,g,r,i,z,Y,J,H; Spectroscopic data from COSMOS master catalogue



Density of galaxies in the color space (OPS) Projection of redshift in the OPS



Ly –alpha break
u-g at 2.5<z<3.0
g-r at 3<z<4

Passive and dusty 
galaxies at low redshift 
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DATA POOR REGIME

Most astronomical literature deals with
● Optically selected samples
● Large spectroscopic knowledge bases

○ More or less uniform coverage of OPS
● Negligible fraction of missing data

Future panchromatic surveys will deal with
● Non optically selected samples (radio, X ray, etc.)
● Reduced spectroscopic knowledge bases

○ Non uniform and incomplete coverage of parameter space 
(very sparse)

○ Spectroscopic KB extracted from different regions of the sky 
(e.g. pencil beam surveys, etc.) 

● Huge fraction of missing data 



The survey EMU - Evolutionary Map of the Universe, to be performed with ASKAP will observe Ca. 
70 million galaxies  

Radio selected samples are dominated (ca 50%)  by starburst and and high-z radio loud AGN 
(Norris, 2011, 2013). These objects are usually faint and underrepresented in optically selected 
samples. 

The median redshift sample of EMU will be ca  z=1.2, while most optically selected samples have 
median redshift at z=0.5/0.7

   

A Comparison of Photometric Redshift Techniques for Large Radio Surveys
Norris, Salvato, Longo, Brescia et al., 2019, ArXiv:1902.05188

Small training sets
Poor coverage of OPS
Strongly biased
Incomplete data 

Test DATA: VLA-COSMOS 1.4 GHz sample
 
2242 sources with optical counterparts (Sargent et al. 2010).
757 soTest DATA: VLA-COSMOS 1.4 GHz sample
form the “spectroscopic KB”. (91 (XMM) + 158 (Chandra) X-ray 
sources).
45 features (photometric measurements)



16 sets of experiments: 
(combinations of...)

1. Luminosity biases (B or R)
Training on shallower sample
Bright (50%) or Random

2. Depth (deep or Shallow)
Deep: train on deepest data available 
Shallow:: train on data at the same 
depth of EMU

3. Radio fluxes (Y or N) 
Inclusion of the radio fluxes in the OPS

4. X-ray AGN (Y or N)
Included (not) in the training set



Random Forest (2 implementations), MLPQNA, LE-Phare (SED), BPZ 
(hybrid), K-NN



RDNY RDNN

Blu: AGN
Red: non-AGN

Makes use of full 
COSMOS wavelength 
coverage

Le Phare: SED fitting



Le Phare

Blu: AGN
Red: non-AGN

RSNY RSNN



MLPQNA RF-NA RF-JHU KNN

Exp. A1/BDNY: 
most realistic for radio surveys (trained on bright 50%)

Blu: AGN
Red: non-AGN



MLPQNA RF-NA RF-JHU KNN

Exp. B2/RDYY 
(random training, deep sample, radio fluxes used, conf. AGN in the training)

   



Data overabundance vs annotated data scarcity

Common to many (most) domains
...different strategies to cope with it
but no clear cut, unique solution....

Crowdsourcing
Semi-supervised learning

Generative adversarial networks
Active Learning

Domain adaptation/transfer learning
SImulations

Domain knowledge and structure



Sample composed by ca. 7.000 sources in Stripe 
82 with X ray counterpart (La Massa et al. 2017)





FS with 
PhiLab

Spectroscopic KB



Due to different depths .... need to handle missing data





Comparison between photo-z computed via 
SED fitting (A17) and MLPQNA for the sample 
for which spectroscopic information is, 
respectively, available (left panel) and not 
available (right panel).

The cyan points indicate the sources for which 
the redshift could be computed only after 
considering supplementary photometry in 
addition to SDSS. 



Some conclusions on upervised methods

● If large annotated, reliable data sets are available, all methods are 
substantially equivalent (DL, RF, MLPQNA, K-NN, etc.)
○ Need for extensive feature selection (different approaches substantially 

equivalent) 
○ Differences are in the range of a few % which are usually negligible when 

errors are properly taken into account

● If data are heterogeneous (depth, coverage, etc.) or biased... methods matter
○ DL substantially useless, RF or KNN outperformed by normal MLP's (better at 

generalising ?)
○ Handling biases and understanding results becomes the crucial part.
○ Lots of work remains to be done to be able to apply these methods to future 

surveys

● The scientific exploitation of future large survey projects requires better 
"annotated data"



Thanks for the attention

... Globally, the shortfall for data scientists 
is projected to be between five million and 
10 million. For SA to have "healthy 
participation" in SKA, the country will need 
200 data scientists when the project is live 
...
Peter Quinn, 2019



http://astroinformatics.info


