An (very brief) introduction to Deep Learning for vision

Prof. Dr. Laura Leal-Taixé

www.dvl.in.tum.de

Technische Universität München

Give eyes to a computer

Understand every pixel of an image

Understand every pixel of an image

Understand every pixel of an image tree person 2 car Instancebased segmentation Semantic person 1 person 3 segmentation road

Understand every pixel of a video

Multiple object tracking

Instancebased segmentation

Semantic segmentation

Dynamic Scene Understanding

Understand every pixel of a video

Multiple object tracking

Instancebased segmentation

Semantic segmentation

Artificial Intelligence

Computational models

LEARNING, TRAINING

Artificial Intelligence

Computational models

Alnowadays

Self-driving cars

What is Deep Learning, really?

What is Deep Learning, really?

Each node is a small classifier

What is Deep Learning, really?

Each node is a small classifier

Each classifier makes tiny decision

	-5	3	2	-5	3
$9\times$	4	3	2	1	-3
mage 5	1	0	3	3	5
ma	-2	0	1	4	4
	5	6	7	9	-1

3×3	6	
put		
Outp		

3×3	0	-1	0
nel	-1	5	-1
Ker	0	-1	0

$$5 \cdot 3 + (-1) \cdot 3 + (-1) \cdot 2 + (-1) \cdot 0 + (-1) \cdot 4 = 15 - 9 = 6$$

	-5	3	2	-5	3
SXC	4	3	2	1	-3
nage 5x	1	0	3	3	5
ma	-2	0	1	4	4
	5	6	7	9	-1

3X3	6	1	
put			

$$5 \cdot 2 + (-1) \cdot 2 + (-1) \cdot 1 + (-1) \cdot 3 + (-1) \cdot 3 = 10 - 9 = 1$$

	-5	3	2	-5	3
$9\times$	4	3	2	1	-3
lmage 5x5	1	0	3	3	5
IMa	-2	0,	1	4	4
	5	6	7	9	-1

3x3	6	1	8
tput			
Out			

3×3	0	-1	0
nel	-1	5	-1
Kerr	0	-1	0

$$\begin{vmatrix} 5 \cdot 1 + (-1) \cdot (-5) + (-1) \cdot (-3) + (-1) \cdot 3 + (-1) \cdot 2 = \\ 5 + 3 = 1 \end{vmatrix}$$

	-5	3	2	-5	3
9x9	4	3	2	1	-3
nage (1	0	3	3	5
lma	-2	0	1	4	4
	5	6	7	9	-1

3×3	6	1	8
put	-7		
Outp			

3×3	0	-1	0
	-1	5	-1
Ker	0	-1	0

$$5 \cdot 0 + (-1) \cdot 3 + (-1) \cdot 0 + (-1) \cdot 1 + (-1) \cdot 3 = 0 - 7 = -7$$

	-5	3	2	-5	3
9×9	4	3	2	1	-3
) 0	1	0	3	3	5
lmage	-2	0	1	4	4
	5	6	7	9	-1

3×3	6	1	8
put	-7	9	
Out			

$$5 \cdot 3 + (-1) \cdot 2 + (-1) \cdot 3 + (-1) \cdot 1 + (-1) \cdot 0 = 15 - 6 = 9$$

	-5	3	2	-5	3
2×5	4	3	2	1	-3
nage 5×	1	0	3	3	5
Ima	-2	0	1	4	4
	5	6	7	9	-1

3X3	6	1	8
put	-7	9	2
Outp			

$$5 \cdot 3 + (-1) \cdot 1 + (-1) \cdot 5 + (-1) \cdot 4 + (-1) \cdot 3 = 15 - 13 = 2$$

	-5	3	2	-5	3
$9\times$	4	3	2	1	-3
nage 5x	1	0	3	3	5
lma	-2	0	1	4	4
	5	6	7	9	-1

3×3	6	1	8
put	-7	9	2
Out	-5		

3×3	0	-1	0
nel	-1	5	-1
Ker	0	-1	0

$$5 \cdot 0 + (-1) \cdot 0 + (-1) \cdot 1 + (-1) \cdot 6$$
$$+ (-1) \cdot (-2) = -5$$

	-5	3	2	-5	3
SXC	4	3	2	1	-3
mage 5x	1	0	3	3	5
lma	-2	0	1	4	4
	5	6	7	9	-1

3×3	6	1	8
put	-7	9	2
Outp	-5	-9	

$$5 \cdot 1 + (-1) \cdot 3 + (-1) \cdot 4 + (-1) \cdot 7 + (-1) \cdot 0 =$$

 $5 - 14 = -9$

	-5	3	2	-5	3
2×5	4	3	2	1	-3
Image 5>	1	0	3	3	5
Ima	-2	0	1	4	4
	5	6	7	9	-1

3x3	6	1	8
put	-7	9	2
Outpo	-5	-9	3

3×3	0	-1	0
mel	-1	5	-1
Ker	0	-1	0

$$5 \cdot 4 + (-1) \cdot 3 + (-1) \cdot 4 + (-1) \cdot 9 + (-1) \cdot 1 =$$

20 - 17 = 3

Image filters

• Each kernel gives us a different image filter

Convolution Layer

Convolution Layer

Visualizing a CNN

What made Deep Learning possible?

Hardware

Models know where to learn from

Models are trainable

Models are complex

Big data

ImageNet: Goal 10.000 images per 100.000 words

Deep Learning: what is it good at?

Input A Response B

English sentence

Machine translation

French sentence

Picture

Face recognition

Photo tagging

Audio clip

Speech recognition

Transcript

Supervised learning

How to obtain the model?

Deep Learning for Image Classification

Classification

Classification

Localization

Object detection

Instance segmentation

Instance segmentation with Mask-RCNN

Instance segmentation with Mask-RCNN

Manipulating images

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV, 2017.

Manipulating images

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV, 2017.

The world is dynamic!

 Deep Learning pushed single-image analysis to a point where results are usable in real-world scenarios

• The world is not static

What we still need in ML: good memory models

Multiple object tracking

Goal: detect and track all objects in a scene

Video super resolution

M. Chu, Y. Xie, L. Leal-Taixé and N. Thuerey. "Temporally Coherent GANs for Video Super-Resolution (TecoGAN)"

Video super resolution

M. Chu, Y. Xie, L. Leal-Taixé and N. Thuerey. "Temporally Coherent GANs for Video Super-Resolution (TecoGAN)"

TecoGAN results

Visual localization

Map

Obtain the camera pose with respect to the map

Photo

Visual Localization: applications

- Robot navigation
- Augmented reality

The challenge: Big data

We need data, lots of data!

 We might not have the luxury of data for some applications such as medical diagnosis

Data is biased

Data bias

- Increase diversity in the data
- Increase diversity in the AI community which is building the algorithms

Data bias

The generalization problem

 Neural networks are GREAT at finding patterns in data they have seen, but not so great at generalizing to new scenarios

True intelligence is still far away

Thank you

Prof. Dr. Laura Leal-Taixé

www.dvl.in.tum.de https://dvl.in.tum.de

If you have images, contact us!