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Al in historical context

= 1940s: Alan Turing first proposes “brain-
inspired” machine intelligence

= 1950s: Frank Rosenblatt (Cornell)
proposes “perceptron” neuron model

= 1960s: Marvin Minsky (MIT) argues for
multi-layer (feedforward) network

= 1970s: Al winter
= 1980s: resurgence

= 1990s: Carver Mead (Caltech) pioneers
“neuromorphic engineering”

The University of Sydney Page 3



Al in historical context

Neuromorphic Electronic Systems

CARVER MEAD

Invited Paper

Proc. IEEE 1990

The University of Sydney

Biological information-processing systems operate on com-
pletely different principles from those with which most engineers
are familiar. For many problems, particularly those in which the
input data are ill-conditioned and the computation can be speci-
fied in a relative manner, biological solutions are many orders of
magnitude more effective than those we have been able to imple-
ment using digital methods. This advantage can be attributed prin-
cipally to the use of elementary physical phenomena as computa-
tional primitives, and to the representation of information by the
relative values of analog signals, rather than by the absolute values
of digital signals. This approach requires adaptive techniques to
mitigate the effects of component differences. This kind of adap-
tation leads naturally to systems that learn about their environ-
ment. |
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Deep learning in 1997

IBM ,. T - . . Gary
DeepBlue : | Kasparov
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Al in the 215 C
How Artificial Intelligence Will Transform Business
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Toyota aims to orrer uper-1ke services I0r 10Kyo taxis using Al

New York Times

How U.S. Retail Giant Kroger Is Using A .~ _ . _ __ _ BusinessTimes
And Robots To Prepare For The 4th n by the end
Industrial Revolution TechForge Media

A Forbes News
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Replace Lawyers, Yet. New York Times. usa '@y Al will help NHS prevent

thousands of cancer-related deaths
Food store Al sees what you put in basket
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Al “holy grail”: general intelligence

" How to realise more brain-like information processing?

Machine computation Human thinking

Deterministic Non-deterministic
Accurate Creative
Repetitive Adaptive

Static Dynamic

The University of Sydney
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Neuron

Neuroscience-Inspired Artificial Intelligence

Demis Hassabis,’-%* Dharshan Kumaran,'-3 Christopher Summerfield,'-* and Matthew Botvinick'-2
1DeepMind, 5 New Street Square, London, UK

2Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK

SInstitute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK

4Department of Experimental Psychology, University of Oxford, Oxford, UK

*Correspondence: dhcontact@google.com

http://dx.doi.org/10.1016/j.neuron.2017.06.011

The fields of neuroscience and artificial intelligence (Al) have a long and intertwined history. In more recent
times, however, communication and collaboration between the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the Al and neuroscience fields and emphasize current
advances in Al that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.
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Neuromorphic computing

= Beyond Von Neumann neuromorphic chip architecture

IBM TrueNorth chips

Intel Loihi chip
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B Conventional HOOVER DAM

hardware

. MEGAWATTS
Neuromorphic SUPERCOMPUTER
hardware CHIP

Produces up to

2 gigawatts

Not analogous to neural
function. Runs slower
than biological neural

g
AU
BRAIN <
-85 billion neurons \“ i

1quadrillion synapses

SPINNAKER

Variable number of
artificial neurons,

typically ~1,000

1 million synapses per
1,000 neurons

Runs at speed of biological
neural networks

LASER IN
CD/DVD
PLAYER
Uses

~5-10 milliwatts

LOIHI

IBM’S TRUE NORTH

~1 million artificial neurons

256 miillion synapses

Runs at speed of biological neural networks
HEARING AID

Uses less than 1 milliwatt

The University of Sydney
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neural networks
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physical model system many core system

sSpiNiaker

N e u r o m o r p h i c c o m p U ti n g The BrainScaleS neuromorphic @) The SpiNNaker neuromorphic @)

®* Human Brain Project:
neuromorphic chips and
electronic circuitry for Al el .
applications iR

https://www.humanbrainproject.eu/ 8 _
en/silicon-brains/ o
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An alternate approach towards brain-like intelligence,
beyond silicon?
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Neurodynamics + nanotechnology

" The brain is a complex physical system whose structure +
function are intricately linked > emergent phenomena

| S |

= Bottom-up self-assembly of nano-materials creates bio-
mimetic structures = neural network-like electronic circuitry
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Neuromorphic nanowire networks

The University of Sydney Demis et al. NCInOfeCh. 20] 5 Page 14



nanowire network

Neuromorphic nanowire networks

= Nanowires self-assemble into a complex,
densely interconnected network, with a
topology similar to a biological neural
network

biological neural network
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Neuromorphic nanowire networks

" Nanowires self-assemble into a complex,
densely interconnected network, like neurons

= When electrically stimulated, junctions
respond like “synthetic synapses”
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Neuromorphic nanowire networks

= Key features: topology of network structure, adaptive synthetic

synapses
YA Rvay

4V

nanowire network
(simulated graph representation)

The University of Sydney

Brain circuitry and learning
A major open question is whether the highly simplified structures of current network models compared
with cortical circuits are sufficient to capture the full range of human-like learning and cognition.

Input Adjustable synapse Output
layer 1 2 3 layer

Complex neural network Informed Al network

Connectivity in cortical networks includes rich sets Biological innate connectivity patterns provide

of connections, including local and long-range mechanisms that guide human cognitive learning.
lateral connectivity, and top-down connections Discovering similar mechanisms, by machine learning or
from high to low levels of the hierarchy. by mimicking the human brain, may prove crucial for

future artificial systems with human-like cognitive abilities.
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Biological neural network models

a Measurement
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Lynn & Bassett, Nat. Rev. Phys. 2019
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Network topology and connectivity

067 | { { {
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Neuromorphic nanowire networks - modelling

» Synthetic synapses: V(1) = IR(1) , dA/dt =V e Va

—> state variable A(f) depends on history = o X
memory of past states

= Kirchoff’s circuit laws: Zj I; = 0,2,V =0 Ag@f-) @}

PVP <€
= Use adjacency matrix (structural connectivity) = sspssss | oasssase |
to solve network dynamics as a function of ¢ GRS AR

= Network conductivity (capacity to transmit
electrical signals) time series: C(t)
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Neuromorphic nanowire networks - modelling

The University of Sydney
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Neuromorphic nanowire networks — signal transduction

10°® ‘ 13
1=0.00 (sec) - (a) experiment
®  OFF switch
3500 ( datal h
data2 ‘q—; —
o P
g 10 | o
3000 = | g
3 £
c 1 >
o ]
2500 o
jos
108
2000 W g
° 0 . 15
€ £ Time (s)
= 1500 —
> 8’
2 L e S D S S S S
5 107 3
1000 < [ (b) model
r {25
500 @ o
o ey
o =
€107 %
0 5 15 E
3 =
2 2
c
] 1
-500 o
W 0.5
-500 0 500 1000 1500 2000 2500 3000 3500 10-8 s .
X (p2m) [
| [ 0
0 5 10 15

Time (s)

The University of Sycney Kuncic et al. IEEE Nano 2018 Page 22



Nonlinear collective dynamics

= Junctions produce nonlinear switching dynamics

= Connected “ON” junctions transmit electrical signal across

network, adapting to dynamics
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Collective switching

Many macroscopic phenomena
airse from collective dynamics
of

underlying  microscopic

components - e.g. gravity,

superconductivity, cognition.

12049 (sec)

The University of Sydney
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Collective switching and criticality

Many macroscopic phenomena
arise from collective dynamics
of

underlying  microscopic

e.g. gravity,
superconductivity, cognition.

components -

criticality
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Critical dynamics occurs in o
system when its

interacting components

| collectively and spontaneously

self-organize to achieve new
global states — e.g.
orientations in Ising model.

spin

= The brain is thought to be poised near criticality, where it can

access the largest repertoire of behaviours in a flexible way
(Chialvo, Nat. Phy5|cs 201 O)
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Power spectral density

" Power law spectra with log-log slope -2 = scale-free
dynamics, consistent with criticality and fMRI brain data
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Power spectral density

" Power law spectra with log-log slope -2 = scale-free
dynamics, consistent with criticality and fMRI brain data
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y (pm)

Recurrent dynamics

" Nonlinear feedback loops enable adaptive dynamics and
sustained internal activity without additional inputs

= Recurrence plot shows when network revisits previous states

t=0.00 (sec)
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The University of Sydney
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. Current /A

Hysteresis conductance loops

" Network state depends on history of past states > memory
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Collective memory

" short-term (fading) vs. long-term (indefinite) = learning capacity
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Collective memory

" Repeated stimulus activates same groups of junctions
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In progress: training and learning

The University of Sydney
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Ohno et al. Nat. Mater. 2011
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In progress: associative learning
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Summary and Outlook

1) Artificial Neural Networks (ANNs) approximate real (biological)
NNs in software

2) Synthetic Neural Networks are a physical realisation of real
NNs in hardware

3) Nanowire networks can naturally produce the complex
topology and emergent, collective dynamics of biological NNs

4) Criticality, recurrence and memory are hallmarks of brain-like
cognitive function and “natural” intelligence

5) Potential beyond-Al applications: neural network on-chip” for
robotics, autonomous systems, reservoir computing, cognitive
devices, neural interfaces.....
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