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Outline

1) Background: AI in historical context
2) Introduction: Neuromorphic computing
3) Synthetic neural networks with complex topology and 

emergent dynamics
4) Training & learning in hardware
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AI in historical context

§ 1940s: Alan Turing first proposes “brain-
inspired” machine intelligence

§ 1950s: Frank Rosenblatt (Cornell) 
proposes “perceptron” neuron model

§ 1960s: Marvin Minsky (MIT) argues for 
multi-layer (feedforward) network

§ 1970s: AI winter
§ 1980s: resurgence
§ 1990s: Carver Mead (Caltech) pioneers 

“neuromorphic engineering”
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AI in historical context

Proc. IEEE 1990
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Deep learning in 1997

IBM 
DeepBlue

Gary 
Kasparov

Image Credit: Bernard H. Humm in Applied Artificial Intelligence
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AI in the 21st C
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AI “holy grail”: general intelligence

§ How to realise more brain-like information processing?

Machine computation Human thinking

Deterministic Non-deterministic

Accurate Creative

Repetitive Adaptive

Static Dynamic
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Neuron
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The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent
times, however, communication and collaboration between the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the AI and neuroscience fields and emphasize current
advances in AI that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.

In recent years, rapid progress has been made in the related
fields of neuroscience and artificial intelligence (AI). At the
dawn of the computer age, work on AI was inextricably inter-
twined with neuroscience and psychology, andmany of the early
pioneers straddled both fields, with collaborations between
these disciplines proving highly productive (Churchland and
Sejnowski, 1988; Hebb, 1949; Hinton et al., 1986; Hopfield,
1982; McCulloch and Pitts, 1943; Turing, 1950). However,
more recently, the interaction has become much less common-
place, as both subjects have grown enormously in complexity
and disciplinary boundaries have solidified. In this review, we
argue for the critical and ongoing importance of neuroscience
in generating ideas that will accelerate and guide AI research
(see Hassabis commentary in Brooks et al., 2012).
We begin with the premise that building human-level general

AI (or ‘‘Turing-powerful’’ intelligent systems; Turing, 1936) is a
daunting task, because the search space of possible solutions
is vast and likely only very sparsely populated. We argue that
this therefore underscores the utility of scrutinizing the inner
workings of the human brain— the only existing proof that
such an intelligence is even possible. Studying animal cognition
and its neural implementation also has a vital role to play, as it
can provide a window into various important aspects of higher-
level general intelligence.
The benefits to developing AI of closely examining biological

intelligence are two-fold. First, neuroscience provides a rich
source of inspiration for new types of algorithms and architec-
tures, independent of and complementary to the mathematical
and logic-based methods and ideas that have largely dominated
traditional approaches to AI. For example, were a new facet of
biological computation found to be critical to supporting a cogni-
tive function, then we would consider it an excellent candidate
for incorporation into artificial systems. Second, neuroscience
can provide validation of AI techniques that already exist. If a
known algorithm is subsequently found to be implemented in
the brain, then that is strong support for its plausibility as an in-
tegral component of an overall general intelligence system.
Such clues can be critical to a long-term research program
when determining where to allocate resources most produc-

tively. For example, if an algorithm is not quite attaining the level
of performance required or expected, but we observe it is core to
the functioning of the brain, then we can surmise that redoubled
engineering efforts geared to making it work in artificial systems
are likely to pay off.
Of course from a practical standpoint of building an AI

system, we need not slavishly enforce adherence to biological
plausibility. From an engineering perspective, what works is
ultimately all that matters. For our purposes then, biological
plausibility is a guide, not a strict requirement. What we are
interested in is a systems neuroscience-level understanding
of the brain, namely the algorithms, architectures, functions,
and representations it utilizes. This roughly corresponds to
the top two levels of the three levels of analysis that Marr
famously stated are required to understand any complex bio-
logical system (Marr and Poggio, 1976): the goals of the sys-
tem (the computational level) and the process and computa-
tions that realize this goal (the algorithmic level). The precise
mechanisms by which this is physically realized in a biological
substrate are less relevant here (the implementation level).
Note this is where our approach to neuroscience-inspired AI
differs from other initiatives, such as the Blue Brain Project
(Markram, 2006) or the field of neuromorphic computing sys-
tems (Esser et al., 2016), which attempt to closely mimic or
directly reverse engineer the specifics of neural circuits (albeit
with different goals in mind). By focusing on the computational
and algorithmic levels, we gain transferrable insights into gen-
eral mechanisms of brain function, while leaving room to
accommodate the distinctive opportunities and challenges
that arise when building intelligent machines in silico.
The following sections unpack these points by considering the

past, present, and future of the AI-neuroscience interface.
Before beginning, we offer a clarification. Throughout this article,
we employ the terms ‘‘neuroscience’’ and ‘‘AI.’’ We use these
terms in the widest possible sense. When we say neuroscience,
we mean to include all fields that are involved with the study of
the brain, the behaviors that it generates, and the mechanisms
by which it does so, including cognitive neuroscience, systems
neuroscience and psychology. When we say AI, we mean work
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Neuromorphic computing

§ Beyond Von Neumann neuromorphic chip architecture 

IBM TrueNorth chips Intel Loihi chip
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Neuromorphic computing

§ Human Brain Project: 
neuromorphic chips and 
electronic circuitry for AI 
applications

https://www.humanbrainproject.eu/
en/silicon-brains/
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An alternate approach towards brain-like intelligence,
beyond silicon?



The University of Sydney Page 13

Neurodynamics + nanotechnology

§ The brain is a complex physical system whose structure + 
function are intricately linked à emergent phenomena

§ Bottom-up self-assembly of nano-materials creates bio-
mimetic structures à neural network-like electronic circuitry
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Neuromorphic nanowire networks

Demis et al. Nanotech. 2015
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Neuromorphic nanowire networks

§ Nanowires self-assemble into a complex, 
densely interconnected network, with a 
topology similar to a biological neural 
network

biological neural network

nanowire network
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Neuromorphic nanowire networks

§ Nanowires self-assemble into a complex, 
densely interconnected network, like neurons  

§ When electrically stimulated, junctions 
respond like “synthetic synapses”

biological neural network

nanowire network
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Neuromorphic nanowire networks

§ Key features: topology of network structure, adaptive synthetic 
synapses

Ullman, Science 2019

nanowire network
(simulated graph representation)
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Biological neural network models

Lynn & Bassett, Nat. Rev. Phys. 2019
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Network topology and connectivity

Image credit: A. Loeffler (PhD student)

A “small world network” (between ordered and random)
is proposed to be optimal for synchronizing neural
activity between different regions in the human brain.

(1011 neurons)
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Neuromorphic nanowire networks - modelling

§ Synthetic synapses: V(!) = IR(!) , d!/dt = V 
à state variable !(t) depends on history à
memory of past states

§ Kirchoff’s circuit laws: ∑# $# = 0 , ∑( )( = 0
§ Use adjacency matrix (structural connectivity) 

to solve network dynamics as a function of t
§ Network conductivity (capacity to transmit 

electrical signals) time series: C(t)
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Neuromorphic nanowire networks - modelling

Diaz-Alvarez et al. Sci. Rep. 2019 (in press)
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Neuromorphic nanowire networks – signal transduction

Kuncic et al. IEEE Nano 2018
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Nonlinear collective dynamics

§ Junctions produce nonlinear switching dynamics
§ Connected “ON” junctions transmit electrical signal across 

network, adapting to dynamics
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Collective switching and criticality

subcritical

critical

supercritical

Many macroscopic phenomena
airse from collective dynamics
of underlying microscopic
components - e.g. gravity,
superconductivity, cognition.

Critical dynamics occurs in a
complex system when its
interacting components
collectively and spontaneously
self-organise to achieve new
global states – e.g. spin
orientations in Ising model.
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Collective switching and criticality
Many macroscopic phenomena
arise from collective dynamics
of underlying microscopic
components - e.g. gravity,
superconductivity, cognition.

Critical dynamics occurs in a
complex system when its
interacting components
collectively and spontaneously
self-organize to achieve new
global states – e.g. spin
orientations in Ising model.

§ The brain is thought to be poised near criticality, where it can 
access the largest repertoire of behaviours in a flexible way 
(Chialvo, Nat. Physics 2010)
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Power spectral density

§ Power law spectra with log-log slope -2 à scale-free 
dynamics, consistent with criticality and fMRI brain data

Kuncic et al. IEEE Nano 2018

FFT
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Power spectral density

§ Power law spectra with log-log slope -2 à scale-free 
dynamics, consistent with criticality and fMRI brain data
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Recurrent dynamics
§ Nonlinear feedback loops enable adaptive dynamics and 

sustained internal activity without additional inputs
§ Recurrence plot shows when network revisits previous states
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Hysteresis conductance loops

§ Network state depends on history of past states à memory
I-V phase diagram

Kuncic et al. IEEE Nano 2018



The University of Sydney Page 30

Collective memory

§ short-term (fading) vs. long-term (indefinite) à learning capacity

indefinite
memory

Kuncic et al. IEEE Nano 2018
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Collective memory

§ Repeated stimulus activates same groups of junctions
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In progress: training and learning

Ohno et al. Nat. Mater. 2011
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In progress: associative learning

Credit: R. Higuchi, NIMS-MANA, Japan

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1) Initial state

2) Training

3) Repeat using several patterns

stimuli
(voltage)

� Bias voltage (input) 
� Highly conductive channel (read)

Initial output is random
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Summary and Outlook
1) Artificial Neural Networks (ANNs) approximate real (biological) 

NNs in software
2) Synthetic Neural Networks are a physical realisation of real 

NNs in hardware
3) Nanowire networks can naturally produce the complex 

topology and emergent, collective dynamics of biological NNs
4) Criticality, recurrence and memory are hallmarks of brain-like 

cognitive function and “natural” intelligence
5) Potential beyond-AI applications: neural network ”on-chip” for 

robotics, autonomous systems, reservoir computing, cognitive 
devices, neural interfaces…..
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