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A pretty good model...

Figure by Guilhem Lavaux

A set of “second order differential equations”. 
Weinberg (2009)

What is gravity?
What are the sources of gravity?
What are the initial conditions?



  

(t = 0.73 Gyr) 

The cosmic large scale structure...

(t = 1.97 Gyr) 

(t = 13.83 Gyr) 

(t = 5.97 Gyr) 

... A source of knowledge!



  

A large scale Bayesian inverse problem

Bayesian Forward modeling:

Structure formation model

Data model

Prior model Data model

Galaxy bias model

Final StateInitial State Data

See e.g. Neyrinck et al. 2014
Ata et al. 2015

Lavaux & Jasche 2016

Jasche, Wandelt (2013)
Lavaux, Jasche (2016)
Jasche, Lavaux (2018)



  

MCMC in high dimensions

HMC: Use Classical mechanics to solve statistical problems!

 The potential :

see e.g. Duane et al. (1987)
Neal (2012)
Betancourt (2017)



  

MCMC in high dimensions

HMC: Use Classical mechanics to solve statistical problems!

 The potential :

 The Hamiltonian :

see e.g. Duane et al. (1987)
Neal (2012)
Betancourt (2017)



  

MCMC in high dimensions

HMC: Use Classical mechanics to solve statistical problems!

 The potential :

 The Hamiltonian :

see e.g. Duane et al. (1987)

Nuisance parameter!!!

Neal (2012)
Betancourt (2017)



  

MCMC in high dimensions

HMC: Use Classical mechanics to solve statistical problems!

 The potential :

 The Hamiltonian :

Nuisance parameter!!!

see e.g. Duane et al. (1987)
Neal (2012)
Betancourt (2017)



  

MCMC in high dimensions

HMC: Use Classical mechanics to solve statistical problems!

 The potential :

 The Hamiltonian :

Nuisance parameter!!!

see e.g. Duane et al. (1987)
Neal (2012)
Betancourt (2017)



  

MCMC in high dimensions

HMC: Use Classical mechanics to solve statistical problems!

 The potential :

 The Hamiltonian :

Nuisance parameter!!!

HMC beats the “curse of dimensionality” by:

 Exploiting gradients

 Using conserved quantities

Randomize      and accept        :

see e.g. Duane et al. (1987)
Neal (2012)
Betancourt (2017)



  

The data model

BORG (Bayesian Origin Reconstruction from Galaxies)

 Incorporates physical model into Likelihood (2LPT / PM)

 Turn inference into initial conditions problem: Find       !!!

Model sensitivity

Poisson Intensity:

Also see e.g. Jasche et al. 2015 ( arXiv:1409.6308 ) / Wang et al. 2014 (arXiv:1407.3451)
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Adjoint coding

The problem:          is a computer program, not analytic!!! 

 Finite differencing not feasible, too high-d!!!

 Any computer program is a sequence of elementary operations

➔ Use chain rule

Result: 

 Sensitivity Matrix of your computer model

 We need the adjoint, so do a transpose

 Matrix cannot be stored, so use operator formalism

line by line derivative of your computer code!!
BEWARE of if-switches!!!
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BORG3: A Modular statistical programing engine

Build flexible data models

 Hierachical Bayes and block sampling

Jasche & Lavaux (2019, A&A)
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A  detailed and physically
plausible model

of
The Nearby Universe



  

 New insights into the nearby universe

Jasche & Lavaux (2019, A&A)

Application: BORG – 2M++ (Lavaux & Hudson (2011, MNRAS))

● Domain: (677.7 Mpc/h)3

● IC f luctuation elements: 2563

● Simulation particles: 5123

● LSS model: Particle Mesh Solver

Some samples from the Markov Chain...

Leclercq et al. (2019, in prep)



  

Inferred mass density  

Leclercq et al. (2019, in prep)

Preliminary results!Inferred mass density in super-galactic plane:



  

Estimating Cluster masses

Coma Mass Profile

Jasche & Lavaux (2019, A&A)
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Estimating Cluster masses

Coma Mass Profile

Shapley Mass Profile

Virgo Mass Profile
Jasche & Lavaux (2019, A&A)



  

Dynamics of the Nearby Universe

Jasche & Lavaux (2019, A&A)

Leclercq et al. (2019, in prep)

Radial velocities Counts of DM streams



  

Dynamics of the Nearby Universe
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Going deeper:

Analyzing 

Sloan Digital Sky Survey III

 DR12 (z < 0.7)



  

Application to SDSS III DR12

First Attempt!!!



  

Application to SDSS III DR12

First Attempt!!!

Kalus, Percival et al. (2018, MNRAS)



  

Foreground contaminations
Foregrounds hamper cosmological inference ( see e.g. Leistedt & Peiris (2014))

Star densities

Sky fluxes

Jasche & Lavaux (2017, A&A)



  

Designing robust likelihoods

Porqueres et al (2019, A&A)

Map of patches on the sky Extruded into 3d volume
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Application to SDSS III DR12

Lavaux et al  (2019, in prep)

Preliminary results!
Real data application LOWZ + CMASS

Ensemble mean density Posterior power-spectrum

Application: BORG – SDSS III
● Domain: (4000 Mpc/h)3

● IC f luctuation elements: 2563

● Simulation particles: 5123

● LSS model: Lagrangian Perturbation Theory



  

Independent test of inferred mass

CMB Lensing:

● Correlation Planck 15  vs. BORG SDSS3 convergence map

Preliminary results!

Jasche et al  (2019 in prep)



  

What are the foregrounds?

Lavaux et al  (2019, in prep)



  

Cosmological parameter via the A/P test 

Kodi Ramanah et al   (2019, A&A)

Using the Alcock-Paczynski cosmological test



  

Cosmological parameter via the A/P test 

Kodi Ramanah et al   (2019, A&A)



  

Cosmological parameter via the A/P test 

Kodi Ramanah et al   (2019, A&A)

Application to SDSS III mock data:



  

Cosmological parameter via the A/P test 

Source of Information (Kodi Ramanah et al (2019, in prep)):
● Complete use of modes
● Exploitation of higher order statistics

Kodi Ramanah et al   (2019, A&A)

SDSS III BAOs

BORG / ALTAIR



  

Summary & Conclusion

BORG combines physical modeling with data science:

 Dynamical modeling accounts for non-Gaussian statistics

 Flexible data modeling via HMC and block sampling 

 Solves complex high dimensional statistics problems

Scientific results: 

 Characterization of initial conditions

 Accurate & Detailed reconstructions of the DM field

 Complementary mass estimates

 Dynamical reconstructions

 Inference of cosmological parameter



  

The end...

Thank You!
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