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How can we extract novel information 
from large and complex datasets?



How can we extract novel information 
from large and complex datasets?
In this talk: using outlier detection and 
dimensionality reduction algorithms!





What are outliers?
“Bad” object: artifacts, cosmic rays, bad reduction.
Misclassified object: star classified as QSO, variable star 
classified as SN.
Tail of a distribution: most luminous SN, fastest accreting BH.
Unknown unknowns: completely new objects we did not 
know we should be looking for.

In astronomy: processes which happen on shorter time 
scales.



How can we find outliers? 
Serendipitously: an expert going through their data and finding 
unexpected objects. -> Usually not applicable for large datasets.

Using supervised learning: objects which have low probability to 
belong to any of the known classes will be considered outliers (or 
one-class SVM).  -> Usually find the outliers that “shout the loudest”. 

Using unsupervised learning: Isolation Forests, unsupervised 
distance assignment, and using dimensionality reduction algorithms. 
-> Strongly depend on the distance metric used.

see Baron & Poznanski (2017) and Baron (2019)



Humans vs. The second law of 
thermodynamics



Science is about compression.
Obtaining knowledge = decreasing entropy.

Exercise: ask Emille about a type Ia supernova.

Clustering 

QSOsStars

Galaxies 

Dimensionality Reduction



From: Gaia Collaboration et al. 2018 

Dimensionality reduction



tSNE and UMAP

tSNE: L.J.P. van der Maaten and G.E. Hinton (2008), https://lvdmaaten.github.io/tsne/
UMAP: Leland McInnes, John Healy, and James Melville (2018), https://umap-learn.readthedocs.io/en/latest/

MNIST dataset: 28x28 features per image
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Dimensionality reduction algorithms used for embedding of high-dimensional data 
into a low dimensional space (typically 2D or 3D).

https://lvdmaaten.github.io/tsne/
https://arxiv.org/search/stat?searchtype=author&query=McInnes%2C+L
https://arxiv.org/search/stat?searchtype=author&query=Healy%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Melville%2C+J
https://umap-learn.readthedocs.io/en/latest/


tSNE and UMAP
The resulting embedding depends on several choices (e.g., the distance metric) 
and on several hyper-parameters.

tSNE: L.J.P. van der Maaten and G.E. Hinton (2008), https://lvdmaaten.github.io/tsne/
UMAP: Leland McInnes, John Healy, and James Melville (2018), https://umap-learn.readthedocs.io/en/latest/

https://lvdmaaten.github.io/tsne/
https://arxiv.org/search/stat?searchtype=author&query=McInnes%2C+L
https://arxiv.org/search/stat?searchtype=author&query=Healy%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Melville%2C+J
https://umap-learn.readthedocs.io/en/latest/


tSNE: example with APOGEE stars
APOGEE: high resolution infrared spectra of more than 100,000 stars in the Milky Way. 
The survey provides the processed infrared spectra, and catalogs of radial velocities, 
stellar parameters, and abundances derived from these spectra.

From Ahn et al. (2014)



tSNE: example with APOGEE stars
Dimensionality reduction of the APOGEE dataset: we assigned distances between the 
objects in the sample using unsupervised Random Forest (see Baron & Poznanski 
2017), and applied tSNE for dimensionality reduction. The resulting embedding was 
then colored according to derived parameters from the public catalog (see Reis et al. 
2018).

tSNE feature 1
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tSNE: example with APOGEE stars
Dimensionality reduction of the APOGEE dataset: we assigned distances between the 
objects in the sample using unsupervised Random Forest (see Baron & Poznanski 
2017), and applied tSNE for dimensionality reduction. The resulting embedding was 
then colored according to derived parameters from the public catalog (see Reis et al. 
2018).



tSNE: example with APOGEE stars



tSNE: outliers in the APOGEE dataset



Autoencoders
A neural network used to learn an efficient low-dimensional representation of the input 
dataset, and can be used for compression, dimensionality reduction, and visualization.

loss function = ( )- 2

Examples in astronomy include: Gianniotis et al. (2015); Yang & Li (2015); Gianniotis et al. 
(2016); Ma et al. (2018b); Schawinski et al. (2018); Ralph et al. (2019).



Self-Organizing Maps
An unsupervised neural network used to produce a low dimensional representation of 
the input dataset using a set of prototypes. The prototypes are built during training to 
match as closely as possible the input data.

Examples in astronomy include: Fustes et al. (2013); Carrasco Kind & Brunner (2014); 
Armstrong et al. (2016); Polsterer et al. (2016); Armstrong et al. (2017); Meusinger et al. 

(2017); Rahmani et al. (2018); Galvin et al. (2019); Ralph et al. (2019).



Self-Organizing Maps

Examples in astronomy include: Fustes et al. (2013); Carrasco Kind & Brunner (2014); 
Armstrong et al. (2016); Polsterer et al. (2016); Armstrong et al. (2017); Meusinger et al. 

(2017); Rahmani et al. (2018); Galvin et al. (2019); Ralph et al. (2019).

SOM prototypes allow a fast and efficient exploration of large datasets. The distance 
from the prototypes can be used to retrieve similar objects and to search for outliers. 

Taken from J. Harwood presentation



Self-Organizing Maps: PINK

Examples in astronomy include: Fustes et al. (2013); Carrasco Kind & Brunner (2014); 
Armstrong et al. (2016); Polsterer et al. (2016); Armstrong et al. (2017); Meusinger et al. 

(2017); Rahmani et al. (2018); Galvin et al. (2019); Ralph et al. (2019).

The low dimensional representation and the resulting prototypes depend on internal 
choices (e.g., distance assignment). Thus, they are not invariant under rotations and flips.



Current Challenges
(*) The resulting dimensionality reduction depends on the algorithm’s 
hyper-parameters. How do we choose the “correct" hyper-parameter 
values?

(*) Most of the algorithms measure distances between the objects in the 
sample. Which distance metric is appropriate for the dataset at hand?



The Sequencer
Baron & Ménard in prep.

Input Output

The algorithm reorders the data according to a detected sequence:
• Based on pure statistics - no training, no randomness, result is always the same.
• Provides a score.
• Algorithm hyper-parameters and distance assignments are optimized using the 

score. So, result does not depend on hyper-parameters or the distance metric.



The Sequencer - the quasar case
Baron & Ménard in prep.



The Sequencer - the quasar case
Baron & Ménard in prep.

Z = 0

Z = 3



The Sequencer: a new correlation 
discovered in Active Galactic Nuclei.

Baron & Ménard (2019)
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Thanks! :)


