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from large and complex datasets?



How can we extract novel information
from large and complex datasets?

In this talk: using outlier detection and
dimensionality reduction algorithms!



Machine Learning in Astronomy: a practical overview

Baron, Dalya

Astronomy is experiencing a rapid growth in data size and complexity. This change fosters the
development of data-driven science as a useful companion to the common model-driven data
analysis paradigm, where astronomers develop automatic tools to mine datasets and extract novel
information from them. In recent years, machine learning algorithms have become increasingly
popular among astronomers, and are now used for a wide variety of tasks. In light of these
developments, and the promise and challenges associated with them, the IAC Winter School 2018
focused on big data in Astronomy, with a particular emphasis on machine learning and deep learning
techniques. This document summarizes the topics of supervised and unsupervised learning
algorithms presented during the school, and provides practical information on the application of such
tools to astronomical datasets. In this document | cover basic topics in supervised machine learning,
including selection and preprocessing of the input dataset, evaluation methods, and three popular
supervised learning algorithms, Support Vector Machines, Random Forests, and shallow Artificial
Neural Networks. My main focus is on unsupervised machine learning algorithms, that are used to
perform cluster analysis, dimensionality reduction, visualization, and outlier detection. Unsupervised
learning algorithms are of particular importance to scientific research, since they can be used to
extract new knowledge from existing datasets, and can facilitate new discoveries.

Publication: eprint arXiv:1904.07248
Pub Date: April 2019



What are outliers?

“Bad” object: artifacts, cosmic rays, bad reduction.
Misclassified object: star classified as QSO, variable star
classified as SN.

Tail of a distribution: most luminous SN, fastest accreting BH.
Unknown unknowns: completely new objects we did not
know we should be looking for.

In astronomy: processes which happen on shorter time
scales.



How can we find outliers?

Serendipitously: an expert going through their data and finding
unexpected objects. -> Usually not applicable for large datasets.

Using supervised learning: objects which have low probability to
belong to any of the known classes will be considered outliers (or
one-class SVM). -> Usually find the outliers that “shout the loudest”.

Using unsupervised learning: Isolation Forests, unsupervised
distance assignment, and using dimensionality reduction algorithms.

-> Strongly depend on the distance metric used.
see Baron & Poznanski (2017) and Baron (2019)
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Science is about compression.
Obtaining knowledge = decreasing entropy.

Exercise: ask Emille about a type la supernova.

GGalaxies
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tSNE and UMAP

Dimensionality reduction algorithms used for embedding of high-dimensional data
into a low dimensional space (typically 2D or 3D).

MNIST dataset: 28x28 features per image
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tSNE: L.J.P. van der Maaten and G.E. Hinton (2008), https://lvdmaaten.qgithub.io/tsne/
UMAP: Leland Mclnnes, John Healy, and James Melville (2018), https://umap-learn.readthedocs.io/en/latest/



https://lvdmaaten.github.io/tsne/
https://arxiv.org/search/stat?searchtype=author&query=McInnes%2C+L
https://arxiv.org/search/stat?searchtype=author&query=Healy%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Melville%2C+J
https://umap-learn.readthedocs.io/en/latest/

tSNE and UMAP

The resulting embedding depends on several choices (e.g., the distance metric)
and on several hyper-parameters.
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tSNE: L.J.P. van der Maaten and G.E. Hinton (2008), https://lvdmaaten.qgithub.io/tsne/
UMAP: Leland Mclnnes, John Healy, and James Melville (2018), https://umap-learn.readthedocs.io/en/latest/
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https://arxiv.org/search/stat?searchtype=author&query=Healy%2C+J
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https://umap-learn.readthedocs.io/en/latest/

tSNE: example with APOGEE stars

APOGEE: high resolution infrared spectra of more than 100,000 stars in the Milky Way.
The survey provides the processed infrared spectra, and catalogs of radial velocities,
stellar parameters, and abundances derived from these spectra.
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tSNE: example with APOGEE stars

we assigned distances between the
objects in the sample using unsupervised Random Forest (see Baron & Poznanski
2017), and applied tSNE for dimensionality reduction. The resulting embedding was
then colored according to derived parameters from the public catalog (see Reis et al.

2018).
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tSNE: example with APOGEE stars

we assigned distances between the
objects in the sample using unsupervised Random Forest (see Baron & Poznanski
2017), and applied tSNE for dimensionality reduction. The resulting embedding was
then colored according to derived parameters from the public catalog (see Reis et al.
2018).
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tSNE: example with APOGEE stars

Carbon over Oxygen abundance ratio
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tSNE: outliers in the APOGEE dataset

Weirdness Score - W5




Autoencoders

A neural network used to learn an efficient low-dimensional representation of the input
dataset, and can be used for compression, dimensionality reduction, and visualization.

Compressed Data
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Examples in astronomy include: Gianniotis et al. (2015); Yang & Li (2015); Gianniotis et al.
(2016); Ma et al. (2018b); Schawinski et al. (2018); Ralph et al. (2019).



Self-Organizing Maps

An unsupervised neural network used to produce a low dimensional representation of
the input dataset using a set of prototypes. The prototypes are built during training to
match as closely as possible the input data.
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Examples in astronomy include: Fustes et al. (2013); Carrasco Kind & Brunner (2014);
Armstrong et al. (2016); Polsterer et al. (2016); Armstrong et al. (2017); Meusinger et al.
(2017); Rahmani et al. (2018); Galvin et al. (2019); Ralph et al. (2019).



Self-Organizing Maps

SOM prototypes allow a fast and efficient exploration of large datasets. The distance
from the prototypes can be used to retrieve similar objects and to search for outliers.

Radio sources from LOFAR survey that resemble the selected prototype (5,5):

Taken from J. Harwood presentation

Examples in astronomy include: Fustes et al. (2013); Carrasco Kind & Brunner (2014);
Armstrong et al. (2016); Polsterer et al. (2016); Armstrong et al. (2017); Meusinger et al.
(2017); Rahmani et al. (2018); Galvin et al. (2019); Ralph et al. (2019).



Self-Organizing Maps:

The low dimensional representation and the resulting prototypes depend on internal
choices (e.g., distance assignment). Thus, they are not invariant under rotations and flips.

Examples in astronomy include: Fustes et al. (2013); Carrasco Kind & Brunner (2014);
Armstrong et al. (2016); ; Armstrong et al. (2017); Meusinger et al.
(2017); Rahmani et al. (2018); Galvin et al. (2019); Ralph et al. (2019).



Current Challenges

(*) The resulting dimensionality reduction depends on the algorithm’s
hyper-parameters. How do we choose the “correct” hyper-parameter
values?

(*) Most of the algorithms measure distances between the objects in the
sample. Which distance metric is appropriate for the dataset at hand?
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The Sequencer

Baron & Ménard in prep.

Output

The algorithm reorders the data according to a detected sequence:

- Based on pure statistics - no training, no randomness, result is always the same.

 Provides a score.

- Algorithm hyper-parameters and distance assignments are optimized using the
score. So, result does not depend on hyper-parameters or the distance metric.



normalised flux
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The Sequencer - the quasar case

Baron & Ménard in prep.
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random index

The Sequencer - the quasar case

Baron & Ménard in prep.

4000 4

3000 8

2000

1000

0
4000

2000

original data

G000 7000

wavelength (A)

8000

9000

4000

3000

"X

2000

ordered inde

1000 58

0
4000

2000

ordered data

G000 7000

wavelength (A)

8000

9000

Z

v

3



normalised flux
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The Sequencer: a new correlation
discovered in Active Galactic Nuclei.

Baron & Ménard (2019)
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Thanks! :)



