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Gravitational lensing

Gravitational lensing probes the clustering of matter
e ~80% of matter is dark matter
e ~20% is baryons

e Baryons are complicated!
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Thermal Sunyaev-Zel’dovich (tSZ) Effect

Hot gas

Observer
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Challenge: Covariance matrices

Use simulations

e Need O(10%) hydrodynamical simulations for tSZ+lensing
e Expensive (~10° CPU hours)

e Dark matter-only simulations are cheap (in comparison)



Why are hydro sims hard?

Feedback couples large and small scales

e Simulating large and small scales at the same time is hard

e But we don’t care about the small scales



Use machine learning?
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Classification
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Generative model: reverse classification
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Karras+2018



o))
—
o
SV
—+
)
©
p o
]
©
A




0
h
o
N
l_l
©
&
o)
S
A'd




Zhu+2017



(Generative models

Variational auto-encoder (VAE)

e [asy to train

e (Can predict variance of output

Generative adversarial network (GAN)

e [ends to give better results

e [raining is more challenging; often unstable



Conditional Variational Auto-Encoder (CVA

Basic problem: given dark matter, sample pressure

® XIS pressure, y Is dark matter

o x~p(z|y)

Introduce latent variable z

o p(aly) = / Az p(x, 2ly) = / &= plaly, 2)p(zly)

e [nfinite mixture model




Conditional Variational Auto-Encoder (CVAE)

Parameterize as multivariate Gaussians

e Generator network pe, (z|y, 2)
e Prior network pe, (2]y)
e |nference network 45 (2|, y)

Variational lower bound

log p(x|y) > =Dk (e (2|2, y)||Pe, (2|Y)) + E.ng, (2]2,y) 108 Do, (x]y, 2)]

KL-term Reconstruction



Conditional Variational Auto-Encoder (CVAE)

Inference network Generator network

x (pressure) qp (2|2, y) po(|y, 2) x’ ~ py(zly, 2)

y (dark matter) y (dark matter)




Results

Pressure (fake) Dark matter (input) Pressure (truth)
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Results
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Convergence vs Compton-y

Convergence k, KiDS-450 n(z) Compton y




tSZ-shear cross spectra
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Where to go from here

Physicality

e Use physical models where they exists; replace effective models and
approximations

Exploit locality and symmetries

e (Generating training data is expensive; increasing sample efficiency is
key

Data representation

e Space is mostly empty. Grids are inefficient at representing cosmic
fields; we need to move on from simple convolutional layers.
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