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transient lightcurves

Supernovae

Variable stars

AGNs

kilonovae, transiting exoplanets, microlensing events, flares, CV, …

Types Ia, Ib, Ic, II, II-
L, II-P, IIn, …
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future surveys: large synoptic survey telescope

In numbers:


* 10-year survey, starting 2022


* 1,000 images/night = 15 TB/night


* 10,000 alerts/30 seconds = 1 GB / 30 s 

the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons

=) 15 TB/night for 10 years

- Covers 18,000 square degrees (40% of the sky)

- Tens of billions of objects, each one observed ⇠ 1000 times
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photometric classification

classification

Instead of spectra, we just see the 
evolution on brightness in some 

wavelengths

time
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Early classification

brokers

spectroscopic/photometric follow-up

photometric classification

time
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Complete light-curve classification
larger & more reliable samples, 
probing new parameter space

photometric classification

time
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ABSTRACT

Automated photometric supernova classification has become an active area of research in recent years in light of
current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey
Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here,
we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists
of two stages: extracting descriptive features from the light curves and classification using a machine learning
algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more
independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach.
We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors,
support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on
simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the
commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the
SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents
perfect classification. We find that a representative training set is essential for good classification, whatever the
feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the
SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve
data, without the need for any redshift information.

Key words: cosmology: observations – methods: data analysis – supernovae: general

1. INTRODUCTION

Astronomy is entering an era of deep, wide-field surveys and
massive data sets, which requires the adoption of new,
automated techniques for data reduction and analysis. In the
past, supernova data sets were small enough to allow
spectroscopic follow-up for the majority of objects, confirming
the type of each. Only type Ia’s are currently used for
cosmology, and the type is of course required for astrophysical
modeling and studies. With the onset of surveys such as the
Dark Energy Survey (DES; Dark Energy Survey Collabora-
tion 2005; Dark Energy Survey Collaboration et al. 2016) and
the upcoming Large Synoptic Survey Telescope (LSST; LSST
Science Collaboration 2009), only a small fraction of the data
set can be spectroscopically followed-up. The current com-
monly used data set, the Joint Light curve Analysis (Betoule
et al. 2014), contains only 740 supernovae, while DES is
expected to detect thousands (Bernstein et al. 2012) and LSST
hundreds of thousands (LSST Science Collaboration 2009) of
supernovae. Thus alternative approaches to supernova science
must be developed to leverage these largely photometric
data sets.

Supernova cosmology is possible without strictly knowing
the supernova type using, for example, Bayesian methods
(Kunz et al. 2007; Hlozek et al. 2012; Newling et al. 2012;
Knights et al. 2013; Rubin et al. 2015). However, these
techniques benefit from having a reasonable probability for the
type of each object in the data set, so some form of probabilistic
classification is useful. Additionally, studies of core-collapse
supernovae and other transients rely on good photometric
classification. Furthermore, the observing strategy for LSST
has not yet been finalized and the effect of observing strategy
on supernova classification has not yet been established. Here
we outline a multi-faceted pipeline for photometric supernova

classification. In future work, we will apply it to LSST
simulations to understand the effect of observing strategy on
classification.
Current photometric supernova classification techniques

focus on empirically based template fitting (Sako et al. 2008,
2014). However, in the past few years there have been several
innovative techniques proposed to address this problem (see
Kessler et al. 2010a and the references therein and Ishida & de
Souza 2013).
Here, we apply machine learning to this problem, as a well-

established method of automated classification used in many
disciplines. As astronomical data sets become larger and more
difficult to process, machine learning has become increasingly
popular (Ball & Brunner 2010; Bloom & Richards 2012).
Machine learning techniques have been proposed as a solution
to an earlier step in the supernova pipeline, that of classifying
transients from images (du Buisson et al. 2015; Wright
et al. 2015). Machine learning is also already being employed
at some level for photometric supernova classification in the
Sloan Digital Sky Survey (SDSS; Frieman et al. 2008; Sako
et al. 2008), using the parameters from template-fitting as
features (Sako et al. 2014).
We investigate the effect of including host galaxy photo-

metric redshift information in automated classification. Reliable
redshifts are important for current classification techniques in
order to reliably fit the templates. However, for future surveys
such as LSST, well-constrained, unbiased redshifts may be
difficult to obtain and could negatively affect classification. A
classification technique that is independent of redshift informa-
tion could therefore be invaluable.
Additionally, we investigate the effect of providing the

machine learning algorithms with a non-representative training
set. In general, one would expect the spectroscopically
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ABSTRACT
Supernova (SN) classification and redshift estimation using photometric data only have become
very important for the Large Synoptic Survey Telescope (LSST), given the large number of
SNe that LSST will observe and the impossibility of spectroscopically following up all the
SNe. We investigate the performance of an SN classifier that uses SN colours to classify
LSST SNe with the Random Forest classification algorithm. Our classifier results in an area-
under-the-curve of 0.98 which represents excellent classification. We are able to obtain a
photometric SN sample containing 99 per cent SNe Ia by choosing a probability threshold.
We estimate the photometric redshifts (photo-z) of SNe in our sample by fitting the SN light
curves using the SALT2 model with nested sampling. We obtain a mean bias (⟨zphot − zspec⟩)
of 0.012 with σ

(
zphot− zspec

1+zspec

)
= 0.0294 without using a host-galaxy photo-z prior, and a mean

bias (⟨zphot − zspec⟩) of 0.0017 with σ
(

zphot− zspec

1+zspec

)
= 0.0116 using a host-galaxy photo-z prior.

Assuming a flat "CDM model with #m = 0.3, we obtain #m of 0.305 ± 0.008 (statistical
errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter
σ int = 0.11) derived using our methodology without using host-galaxy photo-z prior. Our
method will help boost the power of SNe from the LSST as cosmological probes.

Key words: supernovae: general – cosmology: observations.

1 IN T RO D U C T I O N

Since the accelerating expansion of the Universe was discovered by
observing distant Type Ia supernovae (SNe Ia) (Riess et al. 1998;
Perlmutter et al. 1999), SNe Ia have been playing an important
role in constraining the unknown cause behind the observed cosmic
acceleration, or what we refer to as dark energy. The SNe we ob-
serve need to be correctly typed and accurate redshift information
needs to be obtained, before the SNe Ia can be used to constrain
cosmological models. With a sample size of <1000, it is possible
to obtain correct types and redshifts of SNe via spectroscopy. On-
going and planned surveys such as the Dark Energy Survey (DES)
(Bernstein et al. 2012), and the Large Synoptic Survey Telescope
(LSST) (LSST; Science Collaboration et al. 2009), will observe a
dramatically increased number of SNe, making it difficult to spec-
troscopically follow up all the SNe with limited resources. SN cos-
mology will rely on photometric typing and redshift estimation. It
is important to derive methods for reliable and accurate typing and
redshift estimation using the photometric data of the SNe only.

Current methods for SN classification include comparing the SN
light curves against a set of SN templates [PSNID, Sako et al.

⋆
E-mail: mdai@physics.rutgers.edu

(2008)], or making a series of cuts based on the fitted results of
certain SN Ia models (Bazin et al. 2011), etc. Kessler et al. (2010b)
describe and compare a list of methods that participated in the Su-
pernova Photometric Classification Challenge. Most recently, more
efforts have been put in developing classification methods using
machine-learning techniques (Lochner et al. 2016; Möller et al.
2016). It is therefore important to explore which features work well
in a machine-learning algorithm.

In this paper, we use realistic LSST SN simulations to study the
performance of SN classification with the Random Forest classi-
fication algorithm, using SN colours as features for the first time,
together with parameters from a general, model-independent func-
tion fit of the light curves. Features used in machine-learning algo-
rithms are typically derived from the properties of fits to a light-
curve model, such as SALT2 (Guy et al. 2007, 2010). However, the
SALT2-like models have been tuned on SN Ia data, and therefore
have encoded correlations between parameters such as stretch and
colour, which are not correct for core-collapse (CC) SNe. This could
lead to biased features for the CC SNe and make it more difficult
for machine-learning algorithms to type them correctly. Therefore,
we investigate the use of a general function (which is independent
of a specific SN model) to fit the light curves. Without utilizing the
redshift information from SN host galaxies, we are able to obtain
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ABSTRACT

This paper presents a novel method for determining the probability that a supernova candidate belongs to a known
supernova type (such as Ia, Ibc, IIL, etc.) using its photometric information alone. It is validated with Monte Carlo
simulations, and both space- and ground-based data. We examine the application of the method to well-sampled as
well as poorly sampled supernova light curves and investigate to what extent the best currently available supernova
models can be used for typing supernova candidates. Central to the method is the assumption that a supernova can-
didate belongs to a group of objects that can be modeled; we therefore discuss possible ways of removing anomalous
or less well understood events from the sample. This method is particularly advantageous for analyses where the pu-
rity of the supernova sample is important, or for those where it is important to know the number of the supernova can-
didates of a certain type (e.g., in supernova rate studies).

Subject headinggs: supernovae: general

Online material: color figures

1. INTRODUCTION

Type Ia supernovae, empirically established to be standardized
candles, are a staple of experimental cosmology. A number of
future cosmological probes (e.g., the Dark Energy Survey [DES],
the Panoramic Survey Telescope and Rapid Response System
[Pan-STARRS], the Large Synoptic Survey Telescope [LSST],
the Joint Dark Energy Mission [JDEM ]) are planning massive
sky surveys that will collect very large samples of supernovae,
which will have to be classified into several known types. Super-
nova candidates are most easily classified by their spectra, but for
very large ground-based surveys, it may be impractical to obtain
a spectral confirmation of the supernova type for each candidate.
Therefore, it is imperative to develop reliable methods of super-
nova classification based on photometric information alone. Pho-
tometric typing has been described in Poznanski et al. (2002),
Riess et al. (2004a), Johnson & Crotts (2006), and Sullivan et al.
(2006a), amongothers.Most of the existingmethods rely on color-
color or color-magnitude diagrams for supernova classification.

In this paper, we propose a novel approach to the photometric
typing of supernova candidates. This method is based on a prob-
ability derived using a Bayesian approach and is well suited for
extracting the maximum amount of information out of limited
data. Unlike methods relying on color-color or color-magnitude
diagrams, which require a comparison of the candidate’s color(s)
with preexisting tables or plots—a comparison that requires a
good understanding of the errors and assumptions that went into
the making of the literature data—our approach calls for a calcu-
lation of a single number and automatically takes into account all
of the information that is available for a given candidate, while
incorporating the currently best-known models for supernova
behavior.

A Bayesian method in the context of supernova light-curve
fitting has been used in Barris & Tonry (2004); however, it was
applied specifically to Type Ia supernovae to deduce redshift-
independent distancemoduli. In this paper, on the other hand, we
describe a probabilistic approach to typing photometrically sur-
veyed supernovae. Such an approach allows the possibility of the
marginalization (integration) of the unknown, or nuisance, param-

eters. In contrast to a traditional !2 calculation, this technique is
simply a calculation of a probability and does not involve fitting
or minimization. However, it does require that the candidate sam-
ple be well understood, or, in other words, that each candidate
be one of a number of hypothesized objects whose behavior can
be well modeled.
The purpose of this paper is twofold. Apart from introducing a

methodology that can be easily applied ‘‘as is’’ or extended as
needed, we would like to test the extent to which applying the
best currently available supernova models helps in typing super-
nova candidates. There is no doubt that within the next several
years new and improved supernova models will be constructed;
when they are, they can be easily worked into the method.
The paper is structured as follows. In x 2, we derive the prob-

ability that a given candidate is a Type Ia supernova. In x 3, we
discuss howwell the method works when applied to poorly sam-
pledHubble Space Telescope GOODS data and to well-sampled
ground-based Supernova Legacy Survey (SNLS) data. We sug-
gest further improvements to the method in x 3.5, and we discuss
its possible application to ‘‘anomalous’’ objects in x 3.6 and to
fitting for supernova parameters in x 3.7. Conclusions are given
in x 4.

2. THE PROBABILITY

Let us suppose that we have a sample of supernova candidates
where it has been established that every candidate is consis-
tent with some type of astronomical object with known or well-
modeled photometric behavior (one approach to making sure
that this is indeed the case is discussed in x 3.6). In our example,
we consider photometric models for Type Ibc, IIL, IIP, IIn, and
standard, or ‘‘Branch-normal’’ (Branch et al. 1993), Type Ia super-
novae because they are currently the best known; however, the
method can be trivially extended to include other supernova types,
as well as variable objects that are not supernovae, once reliable
models for such objects are available.We would like to determine
the probability that a given candidate in the sample is a supernova
of some known Type T, given its measured light-curve data. Here,
we focus on the case where T is Ia, but the method can be easily
applied to other types as well.
Here and for the remainder of the paper we assume that the

redshift of the supernova candidate is perfectly known.We begin
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Abstract

The unprecedented volume and rate of transient events that will be discovered by the Large Synoptic Survey
Telescope (LSST) demand that the astronomical community update its follow-up paradigm. Alert-brokers—
automated software system to sift through, characterize, annotate, and prioritize events for follow-up—will be
critical tools for managing alert streams in the LSST era. The Arizona-NOAO Temporal Analysis and Response to
Events System (ANTARES) is one such broker. In this work, we develop a machine learning pipeline to
characterize and classify variable and transient sources only using the available multiband optical photometry. We
describe three illustrative stages of the pipeline, serving the three goals of early, intermediate, and retrospective
classification of alerts. The first takes the form of variable versus transient categorization, the second a multiclass
typing of the combined variable and transient data set, and the third a purity-driven subtyping of a transient class.
Although several similar algorithms have proven themselves in simulations, we validate their performance on
real observations for the first time. We quantitatively evaluate our pipeline on sparse, unevenly sampled,
heteroskedastic data from various existing observational campaigns, and demonstrate very competitive
classification performance. We describe our progress toward adapting the pipeline developed in this work into
a real-time broker working on live alert streams from time-domain surveys.

Key words: methods: data analysis – methods: statistical – stars: variables: general – supernovae: general – surveys
– virtual observatory tools

1. Introduction

The Large Synoptic Survey Telescope(LSST; Ivezić
et al. 2008) will revolutionize astrophysics, probing deeper
than the previous generation of wide-field surveys and
replacing static maps with a continuous movie of the night
sky, producing ∼20terabytes of raw images every single night.
This is approximately the same data volume as all of the
imaging data obtained by the Sloan Digital Sky Survey (SDSS;
Abolfathi et al. 2017) over a decade. However, despite the
dramatic increase in depth and data volume, ongoing surveys,
including the Dark Energy Survey (DES; Dark Energy Survey
Collaboration et al. 2016) and the newly commissioned Zwicky
Transient Facility (ZTF; Law et al. 2009; Rau et al. 2009; Ofek
et al. 2012; Smith et al. 2014, and references therein), still
visually inspect candidate detections of source variability,
commonly referred to as “alerts,” to determine the most
promising targets for follow-up studies.

Visual inspection does have merits: humans are very capable
in distinguishing pathological data from interesting astrophy-
sical behavior, can make inferences despite sparse or missing
information, and can combine and derive complex contextual
information, which is incorporated into their final classification
decision. But as the volume of alerts grows, the efficacy of
visual inspection by humans decreases, and the process of
classification by visual inspection becomes increasingly
inconsistent and rate-limiting. Consequently, rare and extre-
mely scientifically interesting objects often go unstudied
because detailed follow-up could not be prioritized in time,
or simply because they were not identified as unusual from
sparse early phase observations.
The limitations of human inspection have been recognized

for some time, but the effort to replace eyeballs with algorithms
at different stages of the analysis is not a simple task. As
reported by various transient surveys, candidate transient
sources flagged by the difference imaging pipelines include
“bogus” artifacts, overwhelming the number of bona fide
objects detected in difference images by an order of magnitude
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ABSTRACT
We present a semi-supervised method for photometric supernova typing. Our approach is to
first use the non-linear dimension reduction technique diffusion map to detect structure in a
data base of supernova light curves and subsequently employ random forest classification on
a spectroscopically confirmed training set to learn a model that can predict the type of each
newly observed supernova. We demonstrate that this is an effective method for supernova
typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this
information to improve classification, a property not enjoyed by template-based methods.
Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy
Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type
Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per
cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To
improve the performance on the photometric sample, we search for better spectroscopic follow-
up procedures by studying the sensitivity of our machine-learned supernova classification on
the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-
up time, we find that, despite collecting data on a smaller number of supernovae, deeper
magnitude-limited spectroscopic surveys are better for producing training sets. For supernova
Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per
cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the
sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic
sample used in the original simulations. When redshift information is available, we incorporate
it into our analysis using a novel method of altering the diffusion map representation of the
supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity
and 13 per cent improvement in Type Ia efficiency.

Key words: methods: data analysis – methods: statistical – techniques: photometric – surveys
– supernovae: general.

1 IN T RO D U C T I O N

Novel approaches to photometric supernova (SN) classification are
in high demand in the astronomical community. The next generation
of survey telescopes, such as the Dark Energy Survey (DES; Annis
et al. 2011) and the Large Synoptic Survey Telescope (LSST; Ivezic
et al. 2008), are expected to observe light curves for a few hundred

⋆A web service for the supernova classification method used in this paper
can be found at http://supernovaclass.info/.
†E-mail: jwrichar@stat.berkeley.edu

thousand supernovae (SNe), far surpassing the resources available
to spectroscopically confirm the type of each. To fully exploit these
large samples, it is necessary to develop methods that can accurately
and automatically classify large samples of SNe based only on their
photometric light curves.

In order to use Type Ia SNe as cosmological probes, it is imper-
ative that pure and efficient Type Ia samples are constructed. Yet,
classifying SNe from their light curves is a challenging problem.
The light flux measurements are often noisy, non-uniform in time
and incomplete. In particular, it is difficult to discern the light curves
of Type Ia SNe from those of Type Ib or Ic SNe, explosive events
which result from the core collapse of massive stars. This difficulty
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ABSTRACT

We developed a deeP architecturE for the LIght Curve ANalysis (PELICAN) for the characterization and the classification of light
curves. It takes light curves as input, without any additional features. PELICAN can deal with the sparsity and the irregular sampling
of light curves. It is designed to remove the problem of non-representativeness between the training and test databases coming from
the limitations of the spectroscopic follow-up. We applied our methodology on di↵erent supernovae light curve databases. First,
we evaluated PELICAN on the Supernova Photometric Classification Challenge for which we obtained the best performance ever
achieved with a non-representative training database, by reaching an accuracy of 0.811. Then we tested PELICAN on simulated light
curves of the LSST Deep Fields for which PELICAN is able to detect 87.4% of supernovae Ia with a precision higher than 98%,
by considering a non-representative training database of 2k light curves. PELICAN can be trained on light curves of LSST Deep
Fields to classify light curves of LSST main survey, that have a lower sampling rate and are more noisy. In this scenario, it reaches an
accuracy of 96.5% with a training database of 2k light curves of the Deep Fields. It constitutes a pivotal result as type Ia supernovae
candidates from the main survey might then be used to increase the statistics without additional spectroscopic follow-up. Finally
we evaluated PELICAN on real data from the Sloan Digital Sky Survey. PELICAN reaches an accuracy of 86.8% with a training
database composed of simulated data and a fraction of 10% of real data. The ability of PELICAN to deal with the di↵erent causes
of non-representativeness between the training and test databases, and its robustness against survey properties and observational
conditions, put it on the forefront of the light curves classification tools for the LSST era.

Key words. methods: data analysis – techniques: photometric – supernovae: general

1. Introduction

A major challenge in cosmology is to understand the observed
acceleration of the expansion of the universe. A direct and very
powerful method to measure this acceleration is to use a class
of objects, called standard candles due to their constant intrin-
sic brightness, which are used to measure luminosity distances.
Type Ia supernovae (SNe Ia), a violent endpoint of stellar evo-
lution, is a very good example of such a class of objects as they
are considered as standardizable candles. The acceleration of the
expansion of the universe was derived from observations of sev-
eral tens of such supernovae at low and high redshift (Perlmutter
et al. 1999; Riess et al. 1998). Then, several dedicated SN Ia
surveys have together measured light curves for over a thousand
SNe Ia, confirming the evidence for acceleration expansion (e.g.
Betoule et al. 2014; Scolnic et al. 2018).
The future Large Survey Synoptic Telescope (LSST, LSST Sci-
ence Collaboration et al. 2009) will improve on past surveys by
observing a much higher number of supernovae. By increasing
statistics by at least an order of magnitude and controlling sys-
tematic errors, it will be possible to pave the way for advances
in precision cosmology with supernovae.
A key element for such analysis is the identification of type Ia
supernova. But the spectroscopic follow-up will be limited and
LSST will discover more supernovae than can be spectroscopi-
cally confirmed. Therefore an e↵ective automatic classification
tool, based on photometric information, has to be developed to
distinguish between the di↵erent types of supernovae with a min-

imum contamination rate to avoid bias in the cosmology study.
This issue was raised before and has led to the launch of the Su-
pernova Photometric Classification Challenge in 2010 (SPCC,
Kessler et al.) to the astrophysical community. Several classi-
fication algorithms were proposed with di↵erent techniques re-
sulting in similar performance without resolving the problem of
non-representativeness between the training and test databases.
Nonetheless, the method developed by Sako et al. (2008, 2018)
based on template fitting, shows the highest average figure of
merit on a representative training database, with an e�ciency of
0.96 and an SN Ia purity of 0.79.
Since then, several machine learning methods were applied to
classify supernovae light curves (e.g. Richards et al. 2012;
Ishida & de Souza 2013; Karpenka et al. 2013; Varughese et al.
2015; Möller et al. 2016; Lochner et al. 2016; Dai et al. 2018).
They showed interesting results when they are applied on a rep-
resentative training dataset but the performance dramatically de-
creases when the learning stage is made on a non-representative
training subset, which represents however the real scenario.
We propose to explore in this paper a new branch of machine
learning, called deep learning, proved to be very e�cient for im-
age and time series classification (e.g. Szegedy et al. 2015; He
et al. 2016; Schmidhuber et al. 2005). One of the main di↵erence
with the classical machine learning methods is that the raw data
are directly transmitted to the algorithm that extracts by itself
the best feature representation for a given problem. In the field
of astrophysics, deep learning methods have shown better results
than the state of the art applied to images for the classification
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ABSTRACT. We report results from the Supernova Photometric Classification Challenge (SNPhotCC), a pub-
licly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected
rates. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing
conditions (sky noise, point-spread function, and atmospheric transparency) based on years of recorded conditions
at the DES site. Simulations of non–Ia-type SNe are based on spectroscopically confirmed light curves that include
unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey
(SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for
training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN.
Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN
and nine entries for the sample that had no redshift information. Several different classification strategies resulted in
similar performance, and for all entries the performance was significantly better for the training subset than for the
unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of
merit for classifying SNe Ia has an efficiency of 0.96 and an SN Ia purity of 0.79. As a public resource for
the future development of photometric SN classification and photo-z estimators, we have released updated simula-
tions with improvements based on our experience from the SNPhotCC, added samples corresponding to the Large
Synoptic Survey Telescope (LSST) and the SDSS-II, and provided the answer keys so that developers can evaluate
their own analysis.

Online material: color figures

1. MOTIVATION

To explore the expansion history of the universe, increas-
ingly large samples of high-quality SNe Ia light curves are being
used to measure luminosity distances as a function of redshift.
With rapidly increasing sample sizes, there are not nearly en-

ough resources to spectroscopically confirm each SN. Cur-
rently, the largest samples are from the Supernova Legacy
Survey (SNLS; Astier et al. 2006) and the Sloan Digital Sky
Survey-II (SDSS-II; York et al. 2000; Frieman et al. 2008), each
with more than 1000 SNe Ia, yet less than half of their SNe are
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TABLE 5
List of Participants in the SNPhotCC.

Classified SN
Participants Abbreviationa +Zb/noZc zphd CPUe Description (strategy classf)

P. Belov and S. Glazov Belov & Glazov yes/no no 90 light curve χ2 test against Nugent templates (2)
S. Gonzalez Gonzalez yes/yes no 120 cuts on SiFTO fit χ2 and fit parameters (1)
J. Richards, Homrighausen, InCAg no/yes no 1 Spline fit & nonlinear dimensionality
C. Schafer, P. Freeman reduction (4)
J. Newling, M. Varuguese, JEDI-KDE yes/yes no 10 Kernel Density Evaluation with 21 params (4)
B. Bassett, R. Hlozek, JEDI Boost yes/yes no 10 Boosted decision trees (4)
D. Parkinson, M. Smith, JEDI-Hubble yes/no no 10 Hubble diagram KDE (3)
H. Campbell, M. Hilton, JEDI Combo yes/no no 10 Boosted decision trees + Hubble KDE (3+4)
H. Lampeitl, M. Kunz,
P. Patel (JEDI grouph)
S. Philip, V. Bhatnagar, MGU+DU-1i no/yes no < 1 light curve slopes & Neural Network (2)
A. Singhal, A. Rai, MGU+DU-2 no/yes no < 1 light curve slopes & Random Forests (2)
A. Mahabal, K. Indulekha
H. Campbell, B. Nichol, Portsmouth χ2 yes/no no 1 SALT2–χ2

r
& False Discovery Rate Statistic (1)

H. Lampietl, M .Smith Portsmouth-Hubble yes/no no 1 Deviation from parametrized Hubble diagram (3)
D. Poznanski Poz2007 RAW yes/no yes 2 SN Automated Bayesian Classifier (SN–ABC) (2)

Poz2007 OPT yes/no yes 2 SN–ABC with cuts to optimize CFoM−Ia (2).
S. Rodney Rodney yes/yes yes 230 SN Ontology with Fuzzy Templates (2)
M. Sako Sako yes/yes yes 120 χ2 test against grid of Ia/II/Ibc templates (2)
S. Kuhlmann, R. Kessler SNANA cuts yes/yes yes 2 Cut on mlcs fit probability, S/N & sampling (1)

aGroups are listed alphabetically by abbreviation.
bClassifications included for SNPhotCC/HOSTZ.
cClassifications included for SNPhotCC/noHOSTZ.
dphoto-z estimates included.
eAverage processing time per SN (seconds) using similar 2-3 GHz cores.
fFrom §3, strategy classes are 1) selection cuts, 2) Bayesian probabilities, 3) Hubble-diagram parametrization and 4) statistical inference.
gInternational Computational Astrophysics Group: http://www.incagroup.org
hJoint Exchange and Development Initiative: http://jedi.saao.ac.za
iMGU=Mahatma Gandhi University, DU=Delhi University.

best method in this first SNPhotCC, here we carefully ex-
amine the CFoM−Ia for the unconfirmed sample in the
SNPhotCC/HOSTZ (Fig. 4). The entry with the highest
average figure of merit (Sako) has an average SN Ia
efficiency of 0.96 and an average SN Ia purity (i.e.,
W false

Ia = 1) of 0.79. However, comparing the best figure
of merit (vs. redshift) for each strategy shows that three
strategies yield similar results: selection cuts, Bayesian
probabilities and statistical inference. The remaining
Hubble-diagram strategy is somewhat worse at low and
high redshifts. Among the entries for a given strategy
there is a large variation in the figure of merit, sug-
gesting that the optimum has not been achieved. For
participants who applied the same method to both the
SNPhotCC/HOSTZ and the SNPhotCC/noHOSTZ, the aver-
age CFoM−Ia was smaller for the SNPhotCC/noHOSTZ by
as little as 6% (Sako and JEDI-KDE) and by as much as
a factor of 2.
The photo-z residuals are shown in Fig. 7 for those en-

tries that include photo-z estimates. Here we show resid-
uals only for true SNe Ia that have been correctly typed
as an SN Ia. When the host-galaxy photo-z is available,
the supernova light curve improves the photo-z precision
for redshifts up to about 0.4. For the SNPhotCC/noHOSTZ,
the bias and scatter of the residuals is significantly larger
than for the SNPhotCC/HOSTZ.

After evaluating the classification results and algo-
rithms, two notable problems were identified in the im-
plementations. First, the spectroscopically confirmed

subset was generally treated as a random subset, which it
clearly is not (§2.5). The magnitude-limited selection of
spectroscopic targets resulted in the selection of brighter
objects in the training subset. In principle, the brighter
objects in the training subset should be re-simulated at
higher redshifts so that classification algorithms can be
trained on more distant (dimmer) objects for which spec-
tra cannot be obtained.
The second general problem is that several entries did

not use all available information from the light curves
(most notably, ignoring colors), or effectively added noise
to the information. The latter was mainly an artifact
from a very poor determination of the epoch of maximum
brightness. Specific details of these problems are given
in Appendix A.
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M. L. Graham9, R. Hložek11,14, E. E. O. Ishida15, J. Guillochon4, S. W. Jha10, D. O. Jones16, K. S. Mandel17,18,
D. Muthukrishna17, A. O’Grady11,14, C. M. Peters14, J. R. Pierel19, K. A. Ponder20, A. Prša21, S. Rodney19,
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ABSTRACT

We describe the simulated data sample for the “Photometric LSST Astronomical Time Series Classi-
fication Challenge” (PLAsTiCC), a publicly available challenge to classify transient and variable events
that will be observed by the Large Synoptic Survey Telescope (LSST), a new facility expected to start
in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 Sep 28 to 2018 Dec 17, and
included 1,094 teams competing for prizes. Here we provide details of the 18 transient and variable
source models, which were not revealed until after the challenge, and release the model libraries at
https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to
predict realistic observing conditions, and we describe the publicly available SNANA simulation code
used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy).
Although PLAsTiCC has finished, the publicly available models and simulation tools are being used
within the astronomy community to further improve classification, and to study contamination in
photometrically identified samples of type Ia supernova used to measure properties of dark energy.
Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and
to develop new models.
Subject headings: techniques: cosmology, supernovae

1. INTRODUCTION

The study of sources with variable brightness in the
night sky has captured human imagination for millen-
nia, and this fascination continues today in the era of
large telescopes. There are two classes of sources whose
brightness changes on time scales less than a year. The
first class is called “transients,” which brighten and fade
over a well defined time period, and are never seen again.
The second class is called “variables,” which brighten and
fade repeatedly. We can categorize transients and vari-
ables based on their brightness and a time scale, such

kessler@kicp.uchicago.edu

as duration of the event (e.g., supernova) or time be-
tween peak brightness (e.g., RR Lyrae). With modern
telescopes and computers, our ability to categorize has
improved dramatically through the use of additional fea-
tures such as colors (brightness ratio between two wave-
length bands), shape of brightness-vs-time (light curve),
and host galaxy environment. In addition to improving
how these sources are characterized, our theoretical un-
derstanding has also improved, such as explaining mecha-
nisms for stellar explosions, for the variability associated
with supermassive black holes, and for stellar physics.
The study of one particular class of transients, known

as type Ia supernovae (SNe), led to the discovery of
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ABSTRACT
The problem of supernova photometric identification will be extremely important for

large surveys in the next decade. In this work, we propose the use of Kernel Princi-

pal Component Analysis (KPCA) combined with k = 1 nearest neighbour algorithm

(1NN) as a framework for supernovae (SNe) photometric classification. The method

does not rely on information about redshift or local environmental variables, so it is

less sensitive to bias than its template fitting counterparts. The classification is en-

tirely based on information within the spectroscopic confirmed sample and each new

light curve is classified one at a time. This allows us to update the principal compo-

nent (PC) parameter space if a new spectroscopic light curve is available while also

avoids the need of re-determining it for each individual new classification. We applied

the method to di↵erent instances of the Supernova Photometric Classification Chal-
lenge (SNPCC) data set. Our method provide good purity results in all data sample

analysed, when SNR>5. As a consequence, we can state that if a sample as the post-

SNPCC was available today, we would be able to classify ⇡ 15% of the initial data set

with purity & 90% (D7+SNR3). Results from the original SNPCC sample, reported as

a function of redshift, show that our method provides high purity (up to ⇡ 97%), spe-

cially in the range of 0.2 6 z < 0.4, when compared to results from the SNPCC, while

maintaining a moderate figure of merit (⇡ 0.25). This makes our algorithm ideal for

a first approach to an unlabelled data set or to be used as a complement in increasing

the training sample for other algorithms. We also present results for SNe photometric

classification using only pre-maximum epochs, obtaining 63% purity and 77% suc-

cessful classification rates (SNR>5). In a tougher scenario, considering only SNe with

MLCS2k2 fit probability >0.1, we demonstrate that KPCA+1NN is able to improve

the classification results up to > 95% (SNR>3) purity without the need of redshift

information. Results are sensitive to the information contained in each light curve, as

a consequence, higher quality data points lead to higher successful classification rates.

The method is flexible enough to be applied to other astrophysical transients, as long

as a training and a test sample are provided.

Key words: supernovae: general; methods: statistical; methods: data analysis

1 INTRODUCTION

Since its discovery (Riess et al. 1998; Perlmutter et al.
1999), dark energy (DE) has become a big challenge in
theoretical physics and cosmology. In order to improve our
understanding about its nature, multiple observations are
used to add better constraints over DE characteristics (e.g.,
Mantz et al. 2010; Blake et al. 2011; Plionis et al. 2011).
In special, large samples of type Ia supernovae (SNe Ia) are

? e-mail: emilleishida@usp.br (EEOI)

being used to measure luminosity distances as a function
of redshift in order to constraint cosmological parameters
(e.g., Kessler et al. 2009; Ishida & de Souza 2011; Benitez-
Herrera et al. 2012; Conley et al. 2011). As part of the ef-
forts towards understanding DE, we expect many thousands
of SNe candidates from large photometric surveys, such as
the Large Synoptic Survey Telescope (LSST) (Tyson 2002),
SkyMapper (Schmidt et al. 2005) and the Dark Energy Sur-

vey (DES) (Wester & Dark Energy Survey Collaboration
2005). However, with rapidly increasing available data, it is
already impracticable to provide spectroscopical confirma-

c� 2010 RAS
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Abstract

Astronomical surveys of celestial sources produce streams of noisy time series mea-
suring flux versus time (“light curves”). Unlike in many other physical domains, however,
large (and source-specific) temporal gaps in data arise naturally due to intranight cadence
choices as well as diurnal and seasonal constraints [1, 2, 3, 4, 5]. With nightly observa-
tions of millions of variable stars and transients from upcoming surveys [4, 6], efficient and
accurate discovery and classification techniques on noisy, irregularly sampled data must
be employed with minimal human-in-the-loop involvement. Machine learning for infer-
ence tasks on such data traditionally requires the laborious hand-coding of domain-specific
numerical summaries of raw data (“features”) [7]. Here we present a novel unsupervised
autoencoding recurrent neural network [8] (RNN) that makes explicit use of sampling times
and known heteroskedastic noise properties. When trained on optical variable star catalogs,
this network produces supervised classification models that rival other best-in-class ap-
proaches. We find that autoencoded features learned on one time-domain survey perform
nearly as well when applied to another survey. These networks can continue to learn from
new unlabeled observations and may be used in other unsupervised tasks such as forecast-
ing and anomaly detection.

The RNN feature extraction architecture proposed (Fig. 1) consists of two components:
an encoder, which takes a time series as input and produces a fixed-length feature vector as
output, and a decoder, which translates the feature vector representation back into an output
time series. The principal advantages of our architecture over a standard RNN autoencoder [8]
are the eative handling of the sampling times and the explicit use of measurement uncertainty
in the loss function.

Specifically, the autoencoder network is trained with times and measurements as inputs
and those same measurement values as outputs. The mean squared reconstruction error of the
output sequence is minimized, using backpropagation and gradient descent. In the case where
individual measurement errors are available, the reconstruction error at each time step can be
weighted (in analogy with standard weighted least squares regression) to reduce the penalty for
reconstruction errors when the measurement error is large (see Methods).
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ABSTRACT
With the advent of powerful telescopes such as the SKA and LSST, we are entering
a golden era of multiwavelength transient astronomy. In order to cope with the
dramatic increase in data volume as well as successfully prioritise spectroscopic
follow-up resources, we propose a new machine learning approach for the classification
of multiwavelength transients. The algorithm consists of three steps: (1) augmentation
and interpolation of the data using Gaussian processes; (2) feature extraction using a
wavelet decomposition; (3) classification with the robust machine learning algorithm
known as random forests. We apply this algorithm to existing radio transient data,
illustrating its ability to accurately classify most of the eleven classes of radio variables
and transients after just eight hours of observations, achieving an overall accuracy
of 73.5%. We show how performance is expected to increase as more training data
are acquired, by training the classifier on a simulated representative training set,
achieving an overall accuracy of 97.4%. Finally, we outline a general approach for
including multiwavelength data for general transient classification, and demonstrate
its e↵ectiveness by incorporating a single optical data point into the analysis, which
improves the overall accuracy by ⇡ 22%.

Key words: Radio Transients – Machine learning

1 INTRODUCTION

In the coming years, radio astronomy will enter a new era
of deep field surveys with the advent of the Square Kilo-
metre Array1 (SKA) and its precursors, MeerKAT2 and the
Australian Square Kilometre Array Pathfinder3 (ASKAP).
These telescopes will achieve unprecedented sensitivity and
resolution. Large MeerKAT science projects such as Thun-
derKAT (Armstrong et al. 2018) will dramatically increase
the detected number of radio transients. In the past, radio

1 www.skatelescope.org
2 www.ska.ac.za/science-engineering/meerkat
3 www.atnf.csiro.au/projects/askap/index.html

transient datasets have been small, allowing spectroscopic
classification of all objects of interest. As the event rate in-
creases, follow-up resources must be prioritised by making
use of early classification of the radio data. Machine learning
algorithms have proven themselves invaluable in this context
(Ball & Brunner 2010).

There has been a substantial amount of work done with
machine learning in astronomy over the last decade. This
includes research done by Bailer-Jones (2001) in stellar clas-
sification, image-based classification of supernovae (Romano
et al. 2006; Bailey et al. 2007), classifying variable stars
(Richards et al. 2011), and photometric supernovae clas-
sification (Newling et al. 2011). In recent years, these al-
gorithms have been used successfully in classifying optical

© 2018 The Authors
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Deep Recurrent Neural Networks for Supernovae Classification

Tom Charnock⇤ and Adam Moss†

School of Physics & Astronomy
University of Nottingham,

Nottingham, NG7 2RD, England
(Dated: October 31, 2016)

We apply deep recurrent neural networks, which are capable of learning complex sequential infor-
mation, to classify supernovaea. The observational time and filter fluxes are used as inputs to the
network, but since the inputs are agnostic additional data such as host galaxy information can also
be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that
deep networks are capable of learning about light curves, however the performance of the network
is highly sensitive to the amount of training data. For a training size of 50% of the representational
SPCC dataset (around 104 supernovae) we obtain a type Ia vs non type Ia classification accuracy
of 94.8%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and a SPCC
figure-of-merit F1 = 0.64. We also apply a pre-trained model to obtain classification probabilities
as a function of time, and show it can give early indications of supernovae type. Our method is
competitive with existing algorithms and has applications for future large-scale photometric surveys.

I. INTRODUCTION

Future large, wide-field photometric surveys such as
the Large Synoptic Survey Telescope (LSST) will pro-
duce a vast amount of data, covering a large fraction of
the sky every few nights. The amount of data produced
lends itself to new analysis methods which can learn ab-
stract representations of complex data. Deep learning is
a powerful method for gaining multiple levels of abstrac-
tion, and has recently produced state-of-the-art results in
tasks such as image classification and natural language
processing. There are several types of deep learning ar-
chitectures, such as convolutional neural networks, deep
belief networks and recurrent neural networks (see [1] for
an excellent overview of deep learning and refs. within
for more details).

There are many applications of deep learning for large
photometric surveys, such as: (1) the measurement of
galaxy shapes from images; (2) automated strong lens
identification from multi-band images; (3) automated
classification of supernovae; (4) galaxy cluster identifi-
cation. In this paper we will focus on supernovae classifi-
cation using deep recurrent neural networks. The LSST,
for example, is expected to find over 107 supernova [2].
However, it is estimated that only 5000 to 10,0001 will be
spectroscopically confirmed by follow up surveys [3], so
classification methods need to be developed for photom-
etry. All previous approaches to automated classifica-
tion [4–6] have first extracted features from supernovae
light curves before using machine learning algorithms.
One of the advantages of deep learning is replacing this
feature extraction.

In this work we will use supervised deep learning. Dur-

⇤ tom.charnock@nottingham.ac.uk
† adam.moss@nottingham.ac.uk
a Code available at https://github.com/adammoss/supernovae
1 Although these numbers are not guaranteed.

Mean Pooling

Softmax

Pooling Layer

Merge Layer

Hidden Layer

Input Layer

Ouput Layer

Hidden Layer

FIG. 1. Bidirectional recurrent neural network for sequence
classification. The input vectors at each sequential step are
fed into a pair of bidirectional hidden layers, which can prop-
agate information forwards and backwards. These are then
merged to obtain a consensus view of the network, and finally
a softmax layer computes classification probabilities.

ing training, the machine is given inputs and produces a
set of output predictions. It is also given the correct set
of outputs. An objective loss function then measures the
error between the predicted and target outputs, and the
machine updates its adjustable parameters to reduce the
error. It can then make predictions for unknown outputs.
Recurrent neural networks (RNNs) are a class of artifi-

cial neural network that can learn about sequential data.
They are commonly used for tasks such speech recogni-
tion and language translation, but have several possible
applications in astronomy and cosmology for processing
temporal or spatial sequential data. RNNs have several
properties which makes them suitable for sequential in-
formation. The inputs to the network are flexible, and
they are able to recognise patterns with noisy data (for
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Abstract—Astronomy light curves are sparse, gappy, and het-
eroscedastic. As a result standard time series methods regularly
used for financial and similar datasets are of little help and
astronomers are usually left to their own instruments and
techniques to classify light curves. A common approach is to
derive statistical features from the time series and to use machine
learning methods, generally supervised, to separate objects into
a few of the standard classes. In this work, we transform the
time series to two-dimensional light curve representations in
order to classify them using modern deep learning techniques.
In particular, we show that convolutional neural networks based
classifiers work well for broad characterization and classification.
We use labeled datasets of periodic variables from CRTS survey
and show how this opens doors for a quick classification of diverse
classes with several possible exciting extensions.

I. INTRODUCTION

Astronomy has always boasted of big datasets. The data
holdings are getting even larger due to surveys that observe
hundreds of millions of sources hundreds of time. The ob-
servations are a time series of flux measurements called light
curves. The staple for discovery has been the flux variations
of individual astronomical objects as noted through such light
curves - that is where the science is. The large irregular
gaps in observing cadence makes classification challenging.
Traditionally statistical features have been derived from the
light curves in order to do follow-up classification (see, e.g.,
[1], [2], [3]). The features include standard statistical measures
like median, skew, kurtosis as well as specialized domain
knowledge based ones such as ‘fading profile of a single

peaked fast transient’. The standard features do not carry
special powers for classifying a varied set of objects. The
designer features are better for specific classes, but carry
with them a bias that does not necessarily translate to the
classification of a wider set.

In [4] we introduced a two-dimensional mapping of the
light curves based on the changes in magnitude (dm) over
the available time-differences (dt). In this work, we mold the
dm�dt mapping into an image format that is suitable as input
for convolutional neural networks (CNNs or ConvNets) [5].
By bringing to bear the machinery of CNNs we are able to
conjure a large number of features unimagined so far. We use
labeled sets to train the CNN as a classifier and following

validation we classify light curves from the Catalina Real-
Time Transient Survey (CRTS; [6], [7], [4], [8], [9]).

II. DATA

The three CRTS surveys span 33,000 sq. degrees encom-
passing light curves of close to half a billion sources. Of
these, the 0.7m CSS telescope yields ⇠ 150 million light
curves. The light curves span well over ten years, and are
homogeneous in that all are collected using white-light without
a filter, and with an asteroid-searching cadence of four images
in 30 minutes. As is typical of the astronomical objects in
wide-area surveys a vast majority of these sources (> 90%)
are non-variable during the survey life-time and within the
typical ⇠ 0.1 mag error-bars for CSS. The remaining sources -
variables - can be broadly classified as periodic and stochastic.
The irregularly spaced sparse light curves mean that often even
the periodically variable sources do not seem obviously so.
There is a third category, that of transients like supernovae
and flaring stars which exhibit enhanced activity over a short
period and otherwise a quiescent and relatively flat (within
error-bars) light curve.

Getting a large, uniform, well-labelled dataset is a challenge
in itself. In order to keep the problem simple during early
experiments, we start with a sample of ⇠ 50k periodic vari-
ables from the CRTS North (CRTS-N) survey [8]. There are
17 classes represented in the sample. Ten of these have fewer
than 500 members. We exclude them from our experiments for
now and will include them in future studies. The numbers for
the remaining seven classes are given in Table I. These clas-
sifications have been carried out by humans mostly based on
calibrated light curves, their phased versions after periods were
determined, and some auxiliary information on the objects. A
little over 10% of these have spectroscopic confirmation of
the exact classification. As a result some misclassifications,
especially in a nearby class can not be ruled out, especially
for objects that are fainter and/or have fewer observations.

III. DMDT MAPPINGS

A light curve consists of brightness variations as a function
of time. Besides the time (expressed here in days - MJD), and
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Deep Learning for Image Sequence Classification of
Astronomical Events

Rodrigo Carrasco Davis1,7, Guillermo Cabrera-Vives2,7, Francisco Förster6,7, Pablo A.
Estévez1,7, Pablo Huijse3,7, Pavlos Protopapas5, Ignacio Reyes1,7, Jorge Martínez4,6,7 and
Cristóbal Donoso2
1Dept. of Electrical Engineering, Universidad de Chile
2Dept. of Computer Science, Universidad de Concepción
3Informatics Institute, Universidad Austral de Chile
4Department of Astronomy, Universidad de Chile
5Institute for Applied Computational Science, Harvard University
6Center for Mathematical Modeling, Universidad de Chile
7Millennium Institute of Astrophysics, Chile

Abstract

We propose a new sequential classification model for astronomical objects based on a recurrent
convolutional neural network (RCNN) which uses sequences of images as inputs. This approach
avoids the computation of light curves or di�erence images. To the best of our knowledge, this
is the first time that sequences of images are used directly for the classification of variable
objects in astronomy. In addition, we solve partially the problem of transfer learning from
synthetic to real-world images. This is done by transforming synthetic light-curves to images in
a realistic way, by taking into account observational conditions and instrumental parameters.
This approach allows us to generate datasets to train and test our RCNN model for di�erent
astronomical surveys and telescopes. Moreover, using a simulated dataset is faster and more
adaptable to di�erent surveys and classification tasks compared to collecting real labeled image
sequences. To test the RCNN classifier trained with a synthetic dataset, we used real-world
data from the High cadence Transient Survey (HiTS) obtaining an average recall of 87% on
four classes: supernovae, RR Lyrae, non–variables, and asteroids. We compare the results of our
model with those of a light curve classifier, in both simulated and real data. Our RCNN model
outperforms the light curve classifier due to the extra information contained on the images.
The results obtained encourage us to use and continue developing the proposed method for
astronomical alert brokers systems that will process alert streams generated by new telescopes
such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.

Keywords: astronomical databases: miscellaneous - methods: statistical - methods: data analysis -
supernovae: general - techniques: image processing
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with

MNRAS 000, 1–18 (2018)

Page 8 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

ing a high-accuracy classification, > 84% right before the
maximum of a supernova light-curve. Further, we show that
the addition of host-galaxy redshifts produce a rise in accu-
racy as high as 12 points.

We note that for spectroscopic redshifts, the complete

sample has lower accuracy when compared with the use of
photometric redshifts. This was not observed in the SALT2

fitted sample and it may be explained by a selection bias
in the complete dataset for supernovae with spectroscopic
redshifts.

When classifying type Ia supernovae before or around
maximum light, we find that contamination is still domi-
nated by Ib supernovae with 9.17 ± 0.19% contribution and
Ib with 3.27± 0.07%. Interestingly, type IIP and IIL2 super-
novae can contribute around 2% of the contamination each,
while this is rarely the case for complete light curve classi-
fication. This may be due to characteristic features of these
light-curves only present after maximum light, such as the
plateau exhibited by type IIp SNe.

In summary, we have shown that SuperNNova is able to
accurately classify light-curves before and at maximum light.
With accuracies ranging from 84.02± 0.21 up to 96.92± 0.26
for the salt fitted dataset, without and with redshifts respec-
tively. SuperNNova opens a path towards e�cient use of
photometric and spectroscopic resources for follow-up. Can-
didates can then be prioritized for diverse science goals in-
cluding targeted samples (e.g. SNe Ia for cosmology) and
improving the SN sample for photometric classification as
recently proposed by Ishida et al. (2018). Such a functional-
ity will be crucial in the upcoming surveys where each night
thousands of transients may be discovered.

3.6 Classifying many supernovae types

There is more to supernovae classification than binary clas-
sification. Time-domain surveys are increasingly exploring
the diversity of supernovae and would benefit from classifi-
cation of multiple supernova classes. We explore ternary (Ia,
Ibc and IIs) and seven-way (Ia, IIP, IIn, IIL1, IIL2, Ib, Ic)
classification tasks. We train with the complete dataset to
obtain a large number of light-curves per target.

For ternary classification, we train with 318, 820 light-
curves per type and for the seven-way classification with
104, 158 per type. Accuracies for these classifications with
and without redshifts are shown in Table 3. For complete
light-curves our method yields unprecedented classification
accuracy, providing a useful tool for obtaining photometric
samples of a diversity of supernovae. Early classification be-
comes a much more challenging tasks and we consequently
observe a notable performance degradation. Nonetheless,
our algorithm provides a reasonable indication of the pos-
sible supernova type and performance is enhanced with the
incorporation of redshift information.

For an equivalent training sample per type, the ternary
or seven-way classification accuracy with or without redshift
and whole light-curves is much lower than for binary classi-
fication (Ia vs. non Ia) as shown in Figure 3. Splitting the
core-collapse supernovae in subclasses adds a new level of
complexity which accounts for the performance drop. Inter-
estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|X,w) where in
our case, P is a categorical distribution, y is the classifica-
tion target, X is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
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Approximating the variational distribution

1. MC dropout 
Gal & Ghahramani 2016
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Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

suitably defined likelihood functions. We then perform approximate variational inference in these
probabilistic Bayesian models (which we will refer to as Variational RNNs). Approximating the
posterior distribution over the weights with a mixture of Gaussians (with one component fixed at
zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs, outputs,
and recurrent layers (drop the same network units at each time step). This is in contrast to the existing
ad hoc techniques where different dropout masks are sampled at each time step for the inputs and
outputs alone (no dropout is used with the recurrent connections since the use of different masks
with these connections leads to deteriorated performance). Our method and its relation to existing
techniques is depicted in figure 1. When used with discrete inputs (i.e. words) we place a distribution
over the word embeddings as well. Dropout in the word-based model corresponds then to randomly
dropping word types in the sentence, and might be interpreted as forcing the model not to rely on
single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone

2

bayesian RNNs
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compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

suitably defined likelihood functions. We then perform approximate variational inference in these
probabilistic Bayesian models (which we will refer to as Variational RNNs). Approximating the
posterior distribution over the weights with a mixture of Gaussians (with one component fixed at
zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs, outputs,
and recurrent layers (drop the same network units at each time step). This is in contrast to the existing
ad hoc techniques where different dropout masks are sampled at each time step for the inputs and
outputs alone (no dropout is used with the recurrent connections since the use of different masks
with these connections leads to deteriorated performance). Our method and its relation to existing
techniques is depicted in figure 1. When used with discrete inputs (i.e. words) we place a distribution
over the word embeddings as well. Dropout in the word-based model corresponds then to randomly
dropping word types in the sentence, and might be interpreted as forcing the model not to rely on
single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone
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2. Bayes by Backprop 
Fortunato+ 2017

Algorithm: Bayes by Backprop for RNNs

Sample ✏ ⇠ N (0, I), ✏ 2 Rd, and set network
parameters to ✓ = µ+ �✏.
Sample a minibatch of truncated sequences (x, y).
Do forward and backward propagation as normal,
and let g be the gradient w.r.t ✓.
Let g

KL
✓ , g

KL
µ , g

KL
� be the gradients of

logN (✓|µ,�2) � log p(✓) w.r.t. ✓, µ and �

respectively.
Update µ using the gradient g+ 1

C gKL
✓

B +
gKL
µ

BC .

Update � using the gradient
⇣

g+ 1
C gKL

✓

B

⌘
✏+ gKL

�
BC .

Figure 1: Illustration (left) and Algorithm (right) of Bayes by Backprop applied to an RNN.

to sample the parameters of the RNN, and how to weight the contribution of the KL regulariser of
(2). We shall briefly justify the adaptation of BBB to RNNs, given in Figure 1. The variational free
energy of (2) for an RNN on a sequence of length T is:

L(✓) = �Eq(✓) [log p(y1:T |✓, x1:T )] + KL [q(✓) || p(✓)] , (3)

where p(y1:T |✓, x1:T ) is the likelihood of a sequence produced when the states of an unrolled RNN
FT are fed into an appropriate probability distribution. The parameters of the entire network are
✓. Although the RNN is unrolled T times, each weight is penalised just once by the KL term,
rather than T times. Also clear from (3) is that when a Monte Carlo approximation is taken to the
expectation, the parameters ✓ should be held fixed throughout the entire sequence.

Two complications arise to the above naive derivation in practice: firstly, sequences are often long
enough and models sufficiently large, that unrolling the RNN for the whole sequence is prohibitive.
Secondly, to reduce variance in the gradients, more than one sequence is trained at a time. Thus the
typical regime for training RNNs involves training on mini-batches of truncated sequences.

Let B be the number of mini-batches and C the number of truncated sequences (“cuts”), then we
can write (3) as:

L(✓) = �Eq(✓)

"
log

BY

b=1

CY

c=1

p(y(b,c)|✓, x(b,c))

#
+ KL [q(✓) || p(✓)] , (4)

where the (b, c) superscript denotes elements of cth truncated sequence in the bth minibatch. Thus
the free energy of mini-batch b of a truncated sequence c can be written as:

L(b,c)(✓) = �Eq(✓)

h
log p(y(b,c)|✓, x(b,c)

, s
(b,c)
prev )

i
+ w

(b,c)
KL KL [q(✓) || p(✓)] , (5)

where w
(b,c)
KL distributes the responsibility of the KL cost among minibatches and truncated se-

quences (thus
PB

b=1

PC
c=1 w

(b,c)
KL = 1), and s

(b,c)
prev refers to the initial state of the RNN for the

minibatch x
(b,c). In practice, we pick w

(b,c)
KL = 1

CB so that the KL penalty is equally distributed
among all mini-batches and truncated sequences. The truncated sequences in each subsequent mini-
batches are picked in order, and so s

(b,c)
prev is set to the last state of the RNN for x(b,c�1).

Finally, the question of when to sample weights follows naturally from taking a Monte Carlo ap-
proximations to (5): for each minibatch, sample a fresh set of parameters.

4 POSTERIOR SHARPENING

The choice of variational posterior q(✓) as described in Section 3 can be enhanced by adding side
information that makes the posterior over the parameters more accurate, thus reducing variance of
the learning process.
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p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
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M
N
R
A
S
0
0
0
,
1
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7
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0
18
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peak brightness i
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M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i

representative 
simulation

Simplistic 
simulation
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M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)

peak brightness i

1. representativity
with BNNs

Model 1

Model 2
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M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i

representative 
simulation

Simplistic 
simulation
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M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
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p
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n
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at
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w
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h

n
o
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d
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n
g
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e
B
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d
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R
N
N
s
w
e
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n
d
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th
e
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ra
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u
ce
d

b
y

0.
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w
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n
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h
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n
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n
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at
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.
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at
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ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
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p
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a
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at
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b
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b
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at
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a
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w
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1.
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e
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n
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to
b
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R
N
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�
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0.
00

5
an

d
�

H
>
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at
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n
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a
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p
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e
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N
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c
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at
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p
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at
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N
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n
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b
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a
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g
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D
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tr
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u
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f
m
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o
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b
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g
h
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s
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l
D
E
S
fi
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s
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d
o
f
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m
u
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te
d
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d
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if
t
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r
S
A
L
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d
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m
p
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te
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h
t
b
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a
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.
M
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b
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g
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n
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r
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a
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m
p
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s
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h
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n
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p
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n
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q
u
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b
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m
p
le
te

a
n
d

S
A
L
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b
e
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m
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p
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e
b
u
t
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m
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p
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os
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g
p
os
si
b
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e
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e
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r
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d
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,
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at
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n
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p
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b
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,
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b
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n
ge
.
In
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n
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p
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-

p
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N
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a
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as
si
fy
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e
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✏
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h
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ra
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m
al

su
p
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p
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ra
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b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
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b
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at
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b
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ra
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N
e
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e
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at
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p
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3.
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%
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r
B
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d

B
B
B
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p
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p
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e
m
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p
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L
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R
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iè
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ra
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b
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b
ra
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r
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L
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ra
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e
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p
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V
a
ri
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o
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R
N
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n
g
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.
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p
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ly

ca
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b
ra
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h
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b
ra
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b
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ra
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b
ra
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b
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at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
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b
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at
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u
at
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p
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at
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d
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R
N
N
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w
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n
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ra
cy
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d

b
y

0.
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w
h
en

tr
ai
n
ed

w
it
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n
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d
at
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.
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at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
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p
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c
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h
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w
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a
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es
ia
n

R
N
N

tr
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r
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b
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t
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at
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w
e
u
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e
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o
m
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in
tr
o
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u
ce
d
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on

4.
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1.

W
e
fi
n
d
b
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h
m
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cs
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b
e
p
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-
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e
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r
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l
B
R
N
N
s,
�
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>
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5
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�

H
>
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.
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h
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n
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e
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m
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at
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n
s
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-

p
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n
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a
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m
p
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s
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e
m
a
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r
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es

in
S
N

p
h
ot
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et
ri
c
cl
as
-
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ti
on

.
R
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en
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y,
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h
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a
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al
.
(2
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in
tr
o
d
u
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d
a
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e-
w
or
k
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r
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e
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m
iz
at
io
n
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ec
tr
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p
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re
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u
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im

p
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ve

S
N

p
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ti
on

d
at
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b
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a
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in
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or

F
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u
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.
D
is
tr
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u
ti
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n
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o
f
m
ax

im
u
m

o
b
se
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ed

b
ri
g
h
tn
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s
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l
D
E
S
fi
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s
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an

d
o
f
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m
u
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te
d
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d
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if
t
fo
r
S
A
L
T
2
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ed
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ef
t
y
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w
)
a
n
d
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m
p
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te
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ig
h
t
b
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e)

d
a
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se
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.
M
a
x
im

u
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o
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ed

b
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g
h
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s
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n
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r
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p
e
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a
n
d
n
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a
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m
p
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s
w
h
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e
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m
u
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d
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d
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t
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n
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o
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a
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m
p
la
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s.

D
a
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n
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sh
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e
m
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n

a
n
d
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t
q
u
a
rt
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o
f
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e
d
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i-

b
u
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o
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.
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h
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m
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a
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d
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A
L
T
2
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d
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a
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p
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b
e
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m
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p
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a
m
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er
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e
b
u
t
h
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e
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t
d
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T
h
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m
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to
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o
f
n
o
n
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n
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v
e
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m
p
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to
se
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p
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n
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at
es
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r
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u
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e.
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g
p
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b
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y
w
h
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h
w
e
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e
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r
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or
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.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)
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p
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on

,
th
e

ge
n
er
al
iz
at
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n
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a
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b
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n
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m
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n
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.
In
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d
y
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e
p
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-

p
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N
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a
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g
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fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)

representative 
simulation

classify

1. representativity
with BNNs

Model 1

Model 2



A. Möller CNRS/LPC Clermont AIA Garching 2019

12

M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i

representative 
simulation

Simplistic 
simulation

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
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SuperNNova: SN Bayesian photometric classification 13

Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 4. A recurrent network on MNIST. This RNN is able to
obtain similar prediction behaviour as Figure 1 which is what is
expected for OOD events.

Figure 5. A Variational Dropout recurrent network on MNIST.
This network collapses and outputs high-certainty predictions for
OOD images.

with high probability while the bayesian network exhibits
large variance for multiple classes.

While we have verified that tuning the various hyper-
parameters improves the uncertainty performance on this
qualitative examination, it is clear that the behaviour of
Bayesian recurrent networks should be critically analyzed:
the network remains at risk to collapse its predictions when
fed with unrelated data. This sheds light on the negative �H

found in Section 5.3: for OOD data, which looks nothing like
the training data, the network likely collapses and outputs
a prediction with very high certainty, giving a very low en-
tropy score to the out of sample data. We note that this is
possibly exacerbated by the type of data used to train the
network: supernova fluxes indeed exhibit variations span-
ning multiple orders of magnitude which leads to persisting
artifacts even after normalization. Future work will focus on
characterizing this phenomenon and developing methods to
improve robustness on out-of-distribution data.

This paper has been typeset from a TEX/LATEX file prepared by
the author.

Figure 6. A Bayesian By Backprop recurrent network on
MNIST. This network collapses and outputs high-certainty pre-
dictions for OOD images.

MNRAS 000, 1–18 (2018)

Page 18 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SuperNNova: SN Bayesian photometric classification 13

Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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12 Möller & de Boissière

Figure 6. Calibration of classification algorithms. Top: reliability
diagram showing the calibration for SALT2 fitted dataset classi-
fication for a single seed. We use the most accurate configura-
tions for the Random Forest (red circles), Baseline RNN (pur-
ple triangles), Variational RNN (yellow circles) and BBB RNNs
(blue triangles). Bottom: dispersion from perfectly calibrated al-
gorithms. Note that the Random Forest algorithm has a large
deviation from perfect calibration while the RNNs are better cal-
ibrated than this algorithm with the BB implementation almost
perfectly calibrated.

distribution of magnitudes and redshifts for both datasets
is shown in Figure 7. To investigate the discrepancy be-
tween spectroscopic and photometric samples, we train with
the non-representative dataset and evaluate the classifica-
tion performance for the test sample in the representative
dataset.

For classification with no redshifts using the Baseline
and Variational RNNs we find that the accuracy is reduced
by 0.3% when trained with a non-representative dataset. Al-
though small, this variation is not within the uncertainties
of our model accuracies.

As discussed in Section 4.4, Bayesian RNNs can capture
epistemic uncertainty which includes the lack of diversity in
the model’s training set. Therefore, we expect a Bayesian
RNN trained on non-representative set (in our case, the full
SALT2 fitted dataset) to be more uncertain than one trained
on a representative set (in our case, a subset of the com-

plete dataset) when evaluating on said representative set.
To quantify this in a rigorous way, we use the two metrics
introduced in Section 4.4.1. We find both metrics to be pos-
itive for all BRNNs, �µ > 0.005 and �H > 0.01.

The lack of representativity and the limitations of su-
pernova templates are major issues in SN photometric clas-
sification. Recently, Ishida et al. (2018) introduced a frame-
work for the optimization of spectroscopic follow-up re-
sources to improve SN photometric classification datasets.
Bayesian RNN uncertainties may be a promising indicator

Figure 7. Distributions of maximum observed brightness (mag),
in all DES filters (g, i, r, z), and of simulated redshift for SALT2
fitted (left yellow) and complete (right blue) datasets. Maximum
observed brightness is shown for type Ia and non-Ia samples while
simulated redshift is shown for each of the available templates.
Dashed lines show the median and first quartile of the distri-
bution. The complete and SALT2 fitted datasets probe similar
parameter space but have di↵erent distributions. This is similar
to what is expected of non-representative samples.

to select follow-up candidates for this purpose. This is an
interesting possibility which we leave for future work.

5.3 Out of distribution light-curves (OOD)

In astronomy, as in any other classification application, the
generalization properties of a classifier and its behavior on
unseen, possibly out-of-distribution samples represents a
challenge. In this section we study the performance of Su-
perNNova when classifying out-of-distribution light-curves.
We test four di↵erent types of OODs: time reversed light-
curves, randomly shu✏ed light-curves, random fluxes and a
sinusoidal signal. The latter two were generated using the
same cadence and flux range as normal supernovae. These
light-curves are only used for testing and were not used for
training at any time.

When classifying out-of-distribution light-curves, all Su-
perNNova algorithms rarely classify these light-curves as
SNe Ia. For binary classification, the reverse and shu✏e
light-curves obtain the largest number of classifications as
SNe Ia, 6.2% and 3.9% respectively with the variational
implementation and less than 3% for the BBB. Many of
these light-curves resemble supernovae, specially with light-
curves with low signal-to-noise. For the sinusoidal and ran-
dom light-curves less than 3% are classified as SNe Ia in
the variational implementation and < 3.94% for Baseline
and BBB implementations. The network seems to charac-
terize type Ia supernovae well and therefore classifies most
OOD events as core-collapse supernovae as can be seen in
Figure 8. In ternary and seven-way classification the most
common predictions for OOD events are types II: IIn, IIp,
IIL1.
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Figure 6. Calibration of classification algorithms. Top: reliability
diagram showing the calibration for SALT2 fitted dataset classi-
fication for a single seed. We use the most accurate configura-
tions for the Random Forest (red circles), Baseline RNN (pur-
ple triangles), Variational RNN (yellow circles) and BBB RNNs
(blue triangles). Bottom: dispersion from perfectly calibrated al-
gorithms. Note that the Random Forest algorithm has a large
deviation from perfect calibration while the RNNs are better cal-
ibrated than this algorithm with the BB implementation almost
perfectly calibrated.

distribution of magnitudes and redshifts for both datasets
is shown in Figure 7. To investigate the discrepancy be-
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the non-representative dataset and evaluate the classifica-
tion performance for the test sample in the representative
dataset.
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RNN trained on non-representative set (in our case, the full
SALT2 fitted dataset) to be more uncertain than one trained
on a representative set (in our case, a subset of the com-

plete dataset) when evaluating on said representative set.
To quantify this in a rigorous way, we use the two metrics
introduced in Section 4.4.1. We find both metrics to be pos-
itive for all BRNNs, �µ > 0.005 and �H > 0.01.

The lack of representativity and the limitations of su-
pernova templates are major issues in SN photometric clas-
sification. Recently, Ishida et al. (2018) introduced a frame-
work for the optimization of spectroscopic follow-up re-
sources to improve SN photometric classification datasets.
Bayesian RNN uncertainties may be a promising indicator
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in all DES filters (g, i, r, z), and of simulated redshift for SALT2
fitted (left yellow) and complete (right blue) datasets. Maximum
observed brightness is shown for type Ia and non-Ia samples while
simulated redshift is shown for each of the available templates.
Dashed lines show the median and first quartile of the distri-
bution. The complete and SALT2 fitted datasets probe similar
parameter space but have di↵erent distributions. This is similar
to what is expected of non-representative samples.

to select follow-up candidates for this purpose. This is an
interesting possibility which we leave for future work.
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generalization properties of a classifier and its behavior on
unseen, possibly out-of-distribution samples represents a
challenge. In this section we study the performance of Su-
perNNova when classifying out-of-distribution light-curves.
We test four di↵erent types of OODs: time reversed light-
curves, randomly shu✏ed light-curves, random fluxes and a
sinusoidal signal. The latter two were generated using the
same cadence and flux range as normal supernovae. These
light-curves are only used for testing and were not used for
training at any time.

When classifying out-of-distribution light-curves, all Su-
perNNova algorithms rarely classify these light-curves as
SNe Ia. For binary classification, the reverse and shu✏e
light-curves obtain the largest number of classifications as
SNe Ia, 6.2% and 3.9% respectively with the variational
implementation and less than 3% for the BBB. Many of
these light-curves resemble supernovae, specially with light-
curves with low signal-to-noise. For the sinusoidal and ran-
dom light-curves less than 3% are classified as SNe Ia in
the variational implementation and < 3.94% for Baseline
and BBB implementations. The network seems to charac-
terize type Ia supernovae well and therefore classifies most
OOD events as core-collapse supernovae as can be seen in
Figure 8. In ternary and seven-way classification the most
common predictions for OOD events are types II: IIn, IIp,
IIL1.

MNRAS 000, 1–18 (2018)

Page 12 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Möller & de Boissière 2019

3. ML probabilities as a threshold?



A. Möller CNRS/LPC Clermont AIA Garching 2019

take away
Accurate: Early >86%, complete > 97%

Bayesian RNNs 

- promising classification method

-> classification model uncertainty

Fast: up to 2,000 lcs/s

- Representativity
- Anomalies
- Reliability

github: supernnova/SuperNNovaOpen source & documented

github: supernnova/SuperNNova
Open source & documented

Can be applied to any lightcurves classification problem

https://github.com/supernnova/SuperNNova
https://github.com/supernnova/SuperNNova

