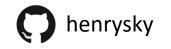
Mapping the Milky Way Galaxy with Deep Learning

Henry W. Leung

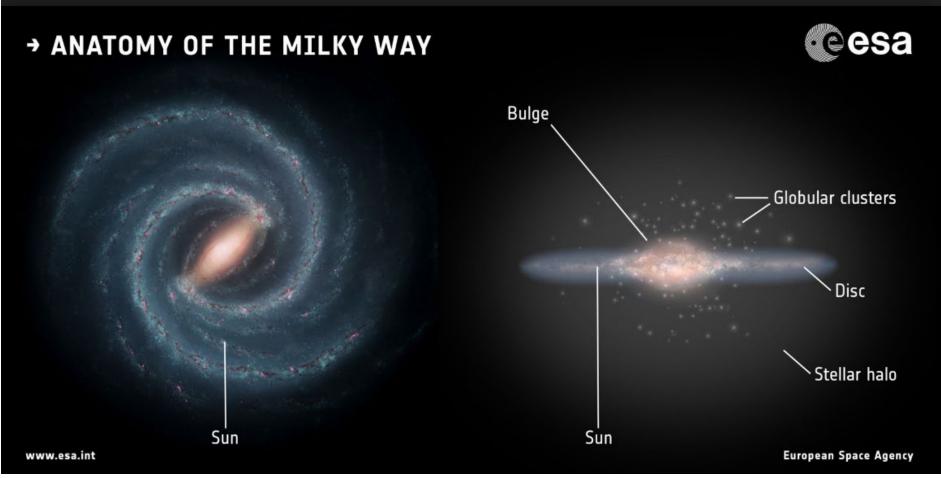
Email: henrysky.leung@utoronto.ca



ESO AIA2019

Why mapping the Milky Way??

• The only one to be observed in detail (3D position/3D velocity/chemistry)



Chemical & dynamical evolution

Kinematics

- Disk Formation History
- Merger?
- Galaxies interaction

Chemistry

- Star Formation History
- Enrichment history

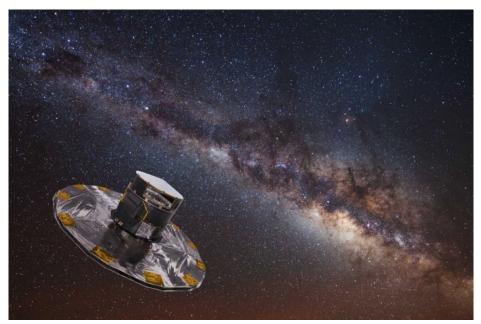
• By high precision astrometric survey

• By high resolution spectroscopic survey

Telescopes

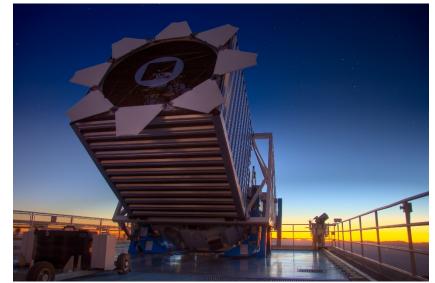
Kinematics

- ESA Gaia mission
- High precision astrometry

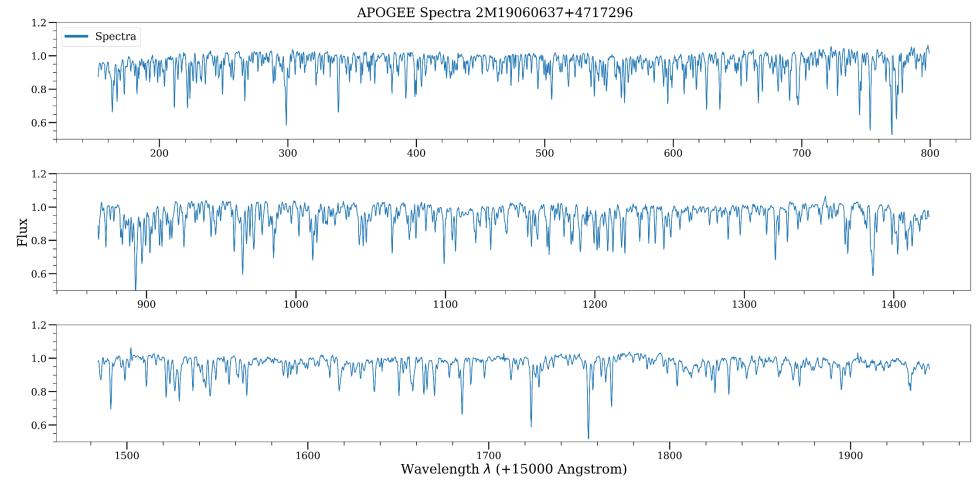


Chemistry

- SDSS APOGEE
- High-SNR, High resolution IR spectrographs



High-res IR spectroscopic data



- (Straightforward): Radial Velocity, Abundances
- (Not Straightforward): Mass?, Age?, Luminosity?, Extinction?
- (Not Possible): Proper motion, Position on the sky

Difficulties (Both science and method)

Kinematics

- Distances are bad at far away from parallax
- Instrumental bias

Chemistry

- Multiple surveys -> multiple pipeline
- Bad at low SNR
- Pipelines are slow

Machine learning method

- Uncertainties in training data
- Incomplete training data
- Uncertainties in prediction

My undergraduate neural net-related research with Prof. *Jo Bovy* (Toronto)

- Method + Science Papers:
 - <u>Deep learning of multi-element abundances from high-resolution spectroscopic data</u> [Henry W. Leung, Jo Bovy (2019a) arXiv:1808.04428]
 - <u>Simultaneous calibration of spectro-photometric distances and the Gaia DR2 parallax zero-point offset with deep learning</u>
 [Henry W. Leung, J. Bovy (2019b) arXiv:1902.08634]
- Science Papers using NNs data:
 - <u>Dynamical heating across the Milky Way disc using APOGEE and Gaia</u> [Ted J. Mackereth, Jo Bovy, **Henry W. Leung**, et al. (2019) arXiv:1901.04502]
 - Life in the fast lane: a direct view of the dynamics, formation, and evolution of the Milky Way's bar

[Jo Bovy, Henry W. Leung, Jason A.S. Hunt, et al. (2019) arXiv:1905.11404]

astroNN (<u>https://github.com/henrysky/astroNN</u>)

- A python (≥3.6) package
- Well tested (86% code coverage)
- Well documented (<u>https://astronn.rtfd.io/</u>)

- Compatible with TensorFlow ≥ 1.13.2 & TensorFlow ≥ 2.0.0b0
- In active development (Both method & science)
- Easy to use & few handy functions
- Galaxy10 dataset (from SDSS/GalaxyZoo, counterpart of MNIST)
- Open Science (Software code & papers code)

Now go into the details of methods and sciences

Stellar parameters & Chemical abundances

- Develops a Python package called astroNN
- Bayesian NNs with Dropout VI (Y. Gal, et al. 2015) w/ modified loss function (H. W. Leung, J. Bovy 2019)
- Structures NNs to reflect physical knowledge
- Infer stellar parameters and chemical abundances precisely at low SNR, account for training data uncertainty & uncertainty in prediction

Bayesian NNs with Dropout Variation Inference

- Probabilistic weights with prior distribution
- Weights' true PDF: VI by approximating vs MCMC by sampling
 MCMC is impossible as we have millions to billions weights
- Dropout approx. true PDFs as a product of Bernoulli distributions
- Probably one of the easiest Bayesian NNs to be done that works

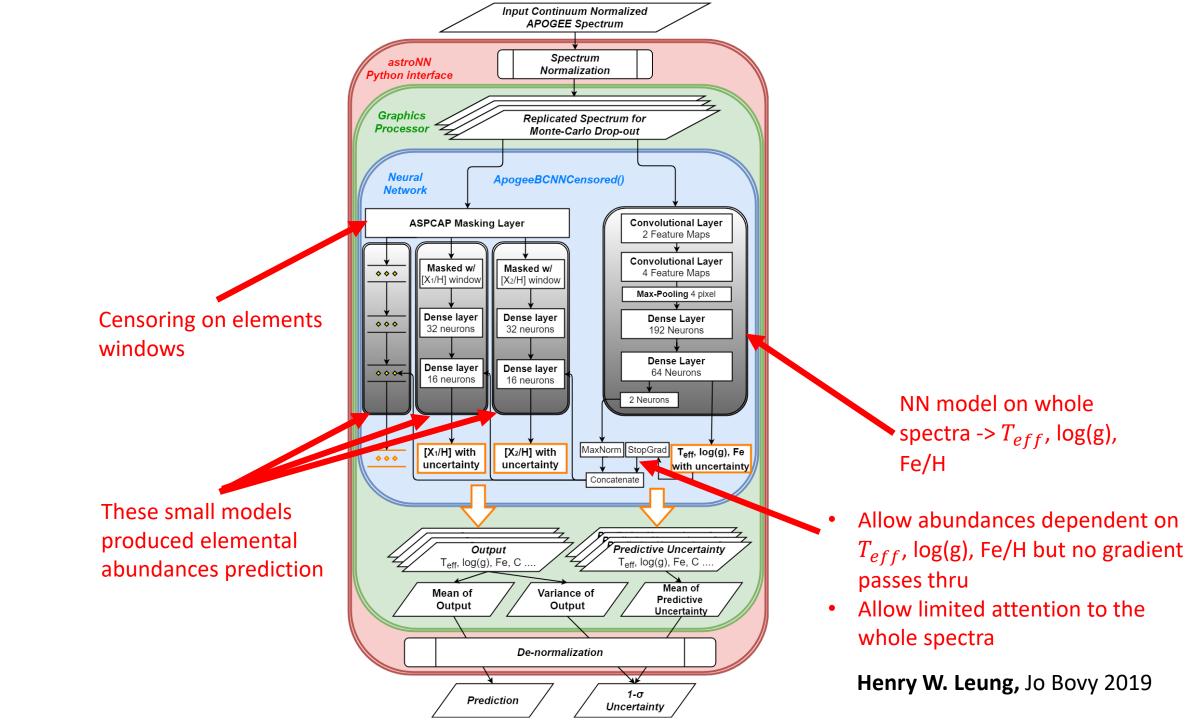
Modified loss function & uncertainties

- Taking training labels uncertainty into account along with *predictive uncertainty,* along with incomplete labels
- Prediction uncertainty = sum of predictive and model uncertainty

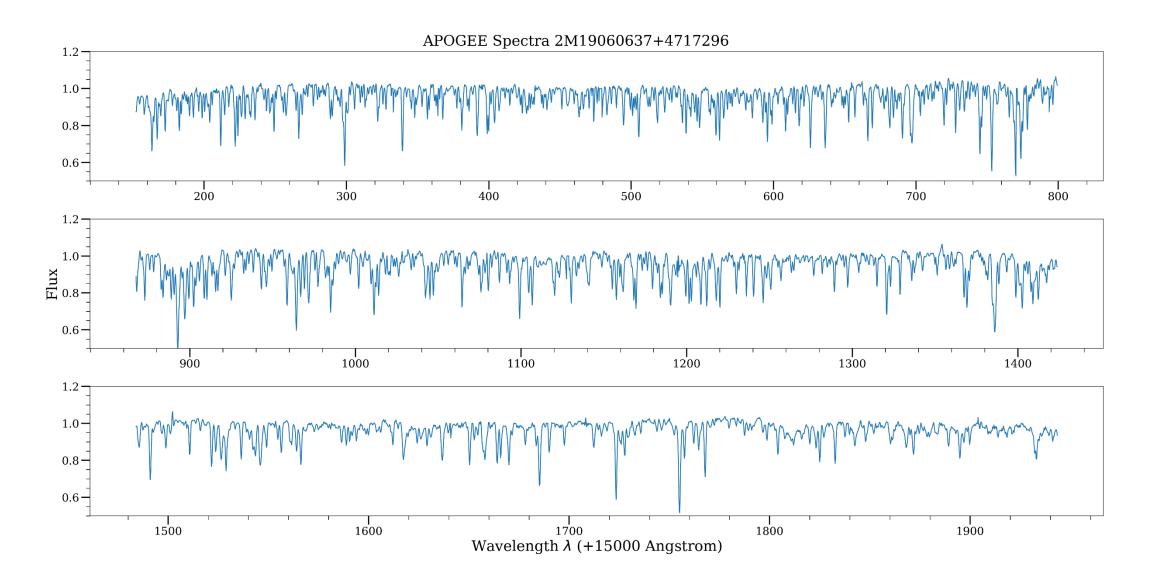
$$J(y_i, \hat{y}_i) = \begin{cases} \frac{1}{2}(\hat{y_i} - y_i)^2 e^{-s_i} + \frac{1}{2}(s_i) & \text{for } y_i \neq \text{MAGIC NUM} \\ 0 & \text{for } y_i = \text{MAGIC NUM} \end{cases}, \text{where} \begin{cases} s_i = \ln \left[\sigma_{\text{known},i}^2 + \sigma_{\text{predictive},i}^2\right] \\ \text{Magic Number for incomplete labels} \end{cases}$$

Then
$$J(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{D} \sum_{i=1}^{D} J(y_i, \hat{y}_i) \right) \mathcal{F}_{\text{correction}, i}$$
, where $\mathcal{F}_{\text{correction}, i} = \frac{D}{D_i}$

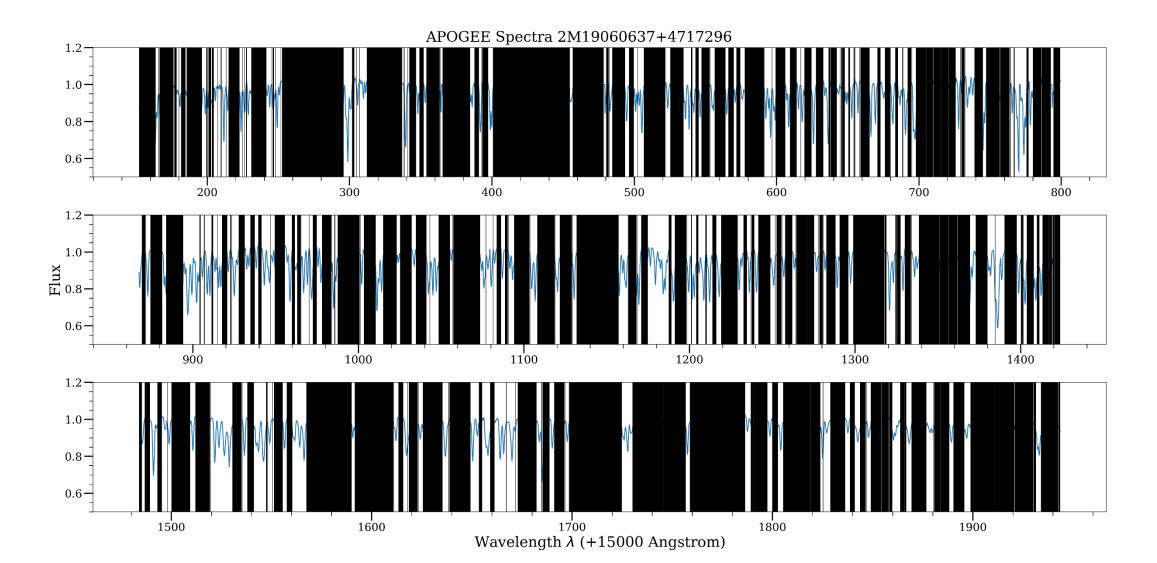
Henry W. Leung, Jo Bovy 2019

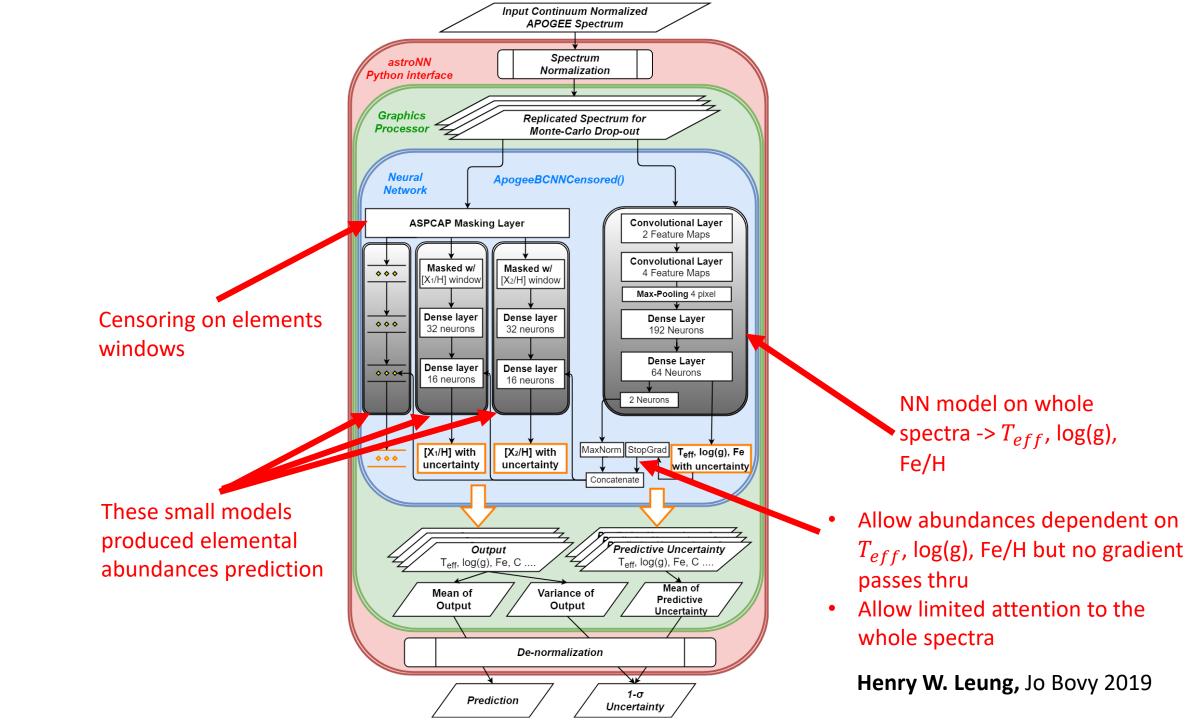


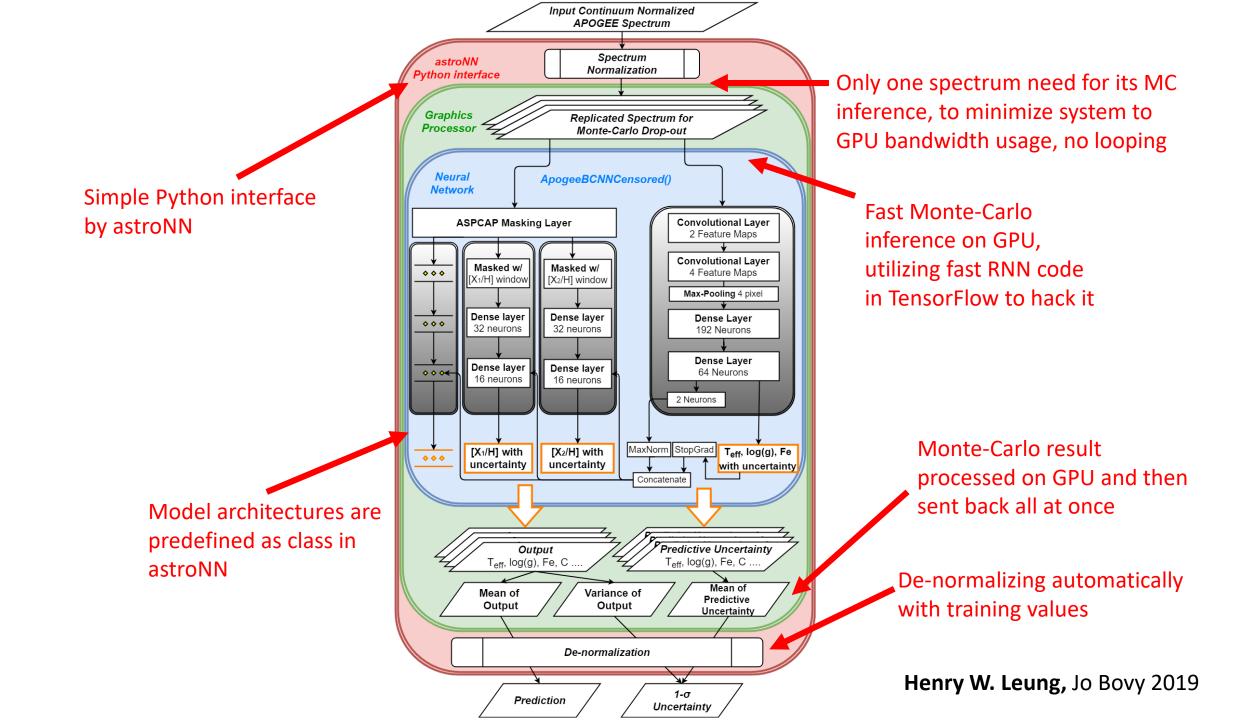
An example of censoring with [Fe] windows



An example of censoring with [Fe] windows

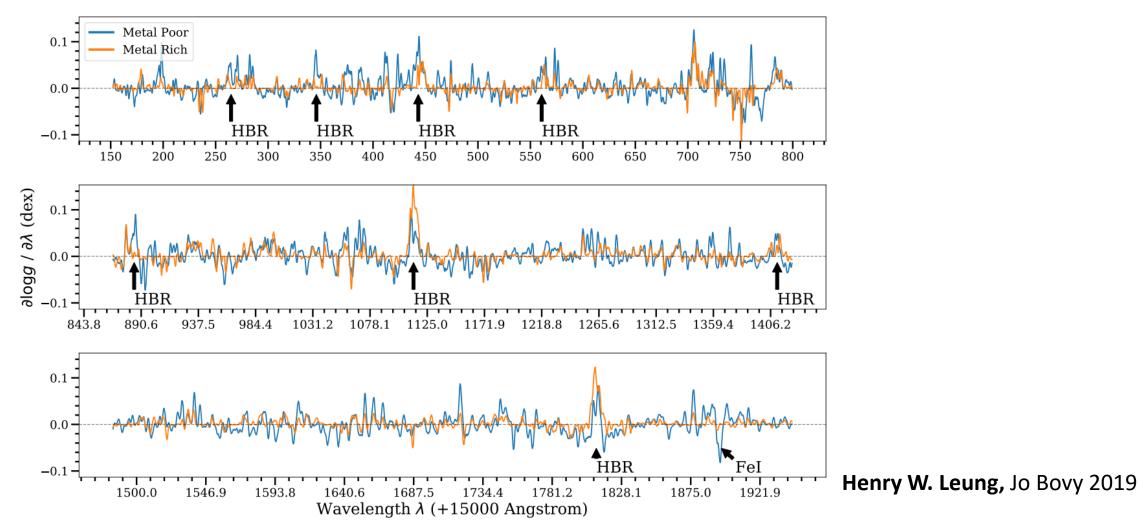




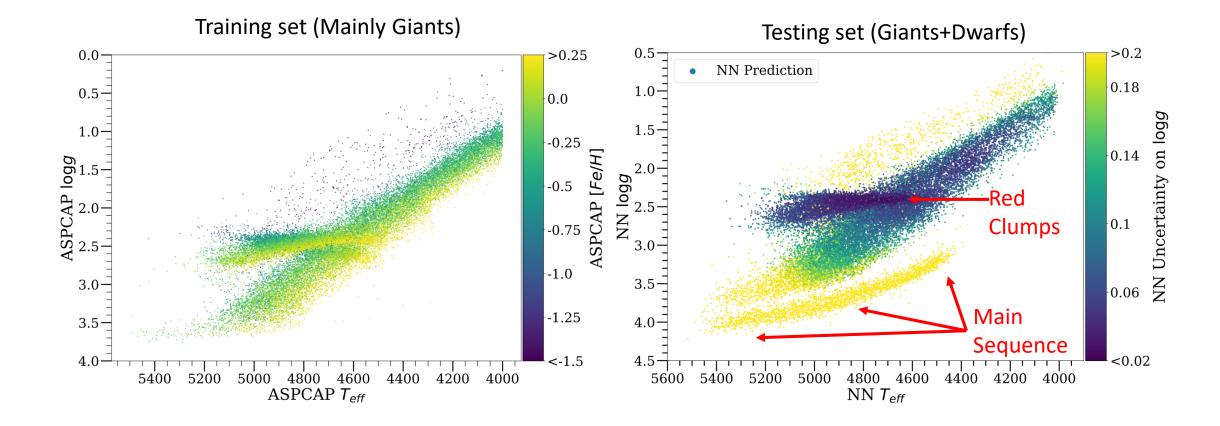


Where do the model pay attention to?

Gradient of logg in Metal Poor and Rich Stars



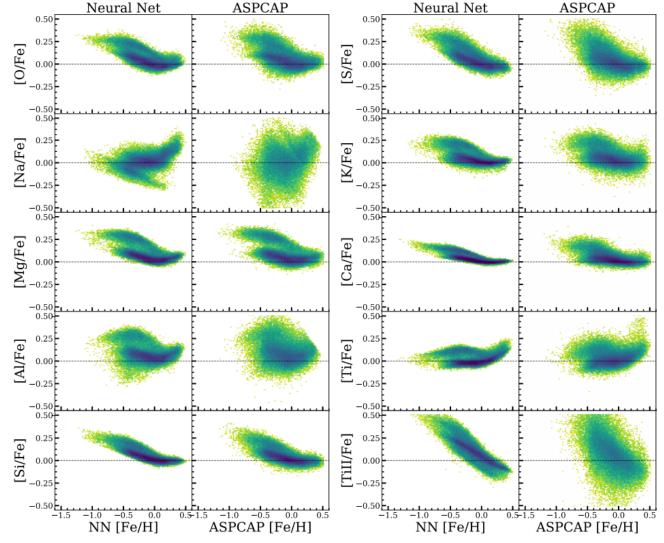
Stellar parameters & Chemical abundances



Henry W. Leung, Jo Bovy 2019

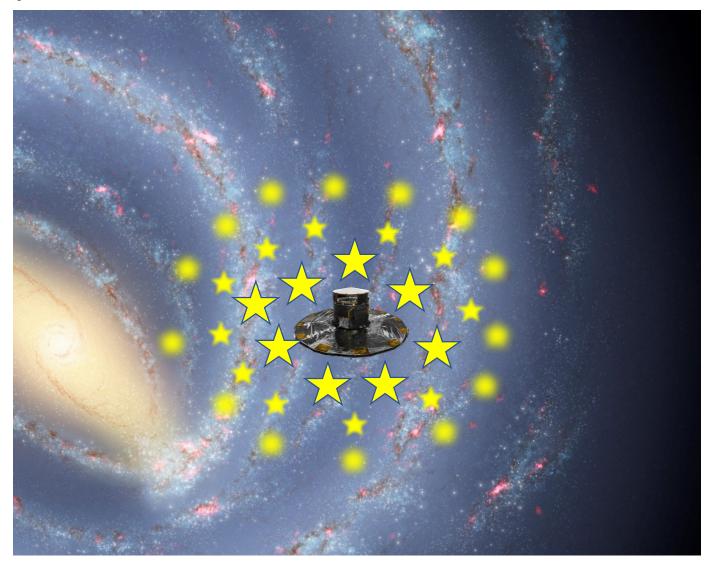
Stellar parameters & Chemical abundances

- Work well for low SNR
- Reasonable uncertainties
- Fast inference
 - 22 parameters for 10 millions 7514 pixels spectra in 300 seconds on GTX1060 6GB
- For small dataset too!
 - Approx. 5000 training spectra with reasonable result

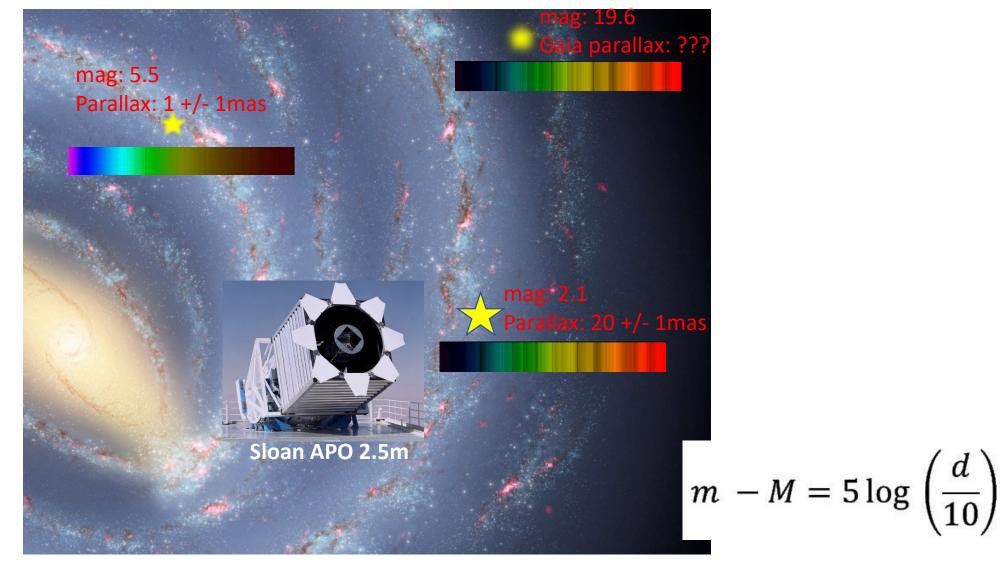


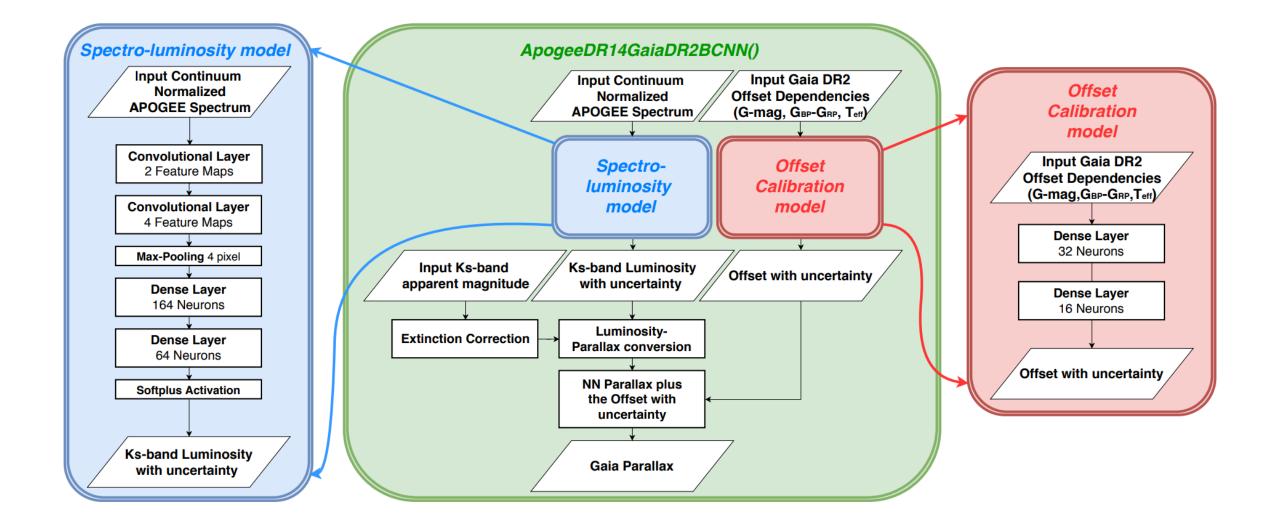
Henry W. Leung, Jo Bovy 2019

Spectro-photometric Distances to stars



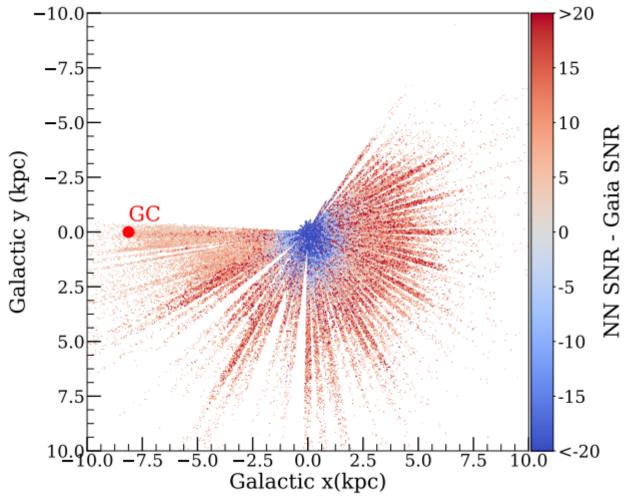
Spectro-photometric Distances to stars



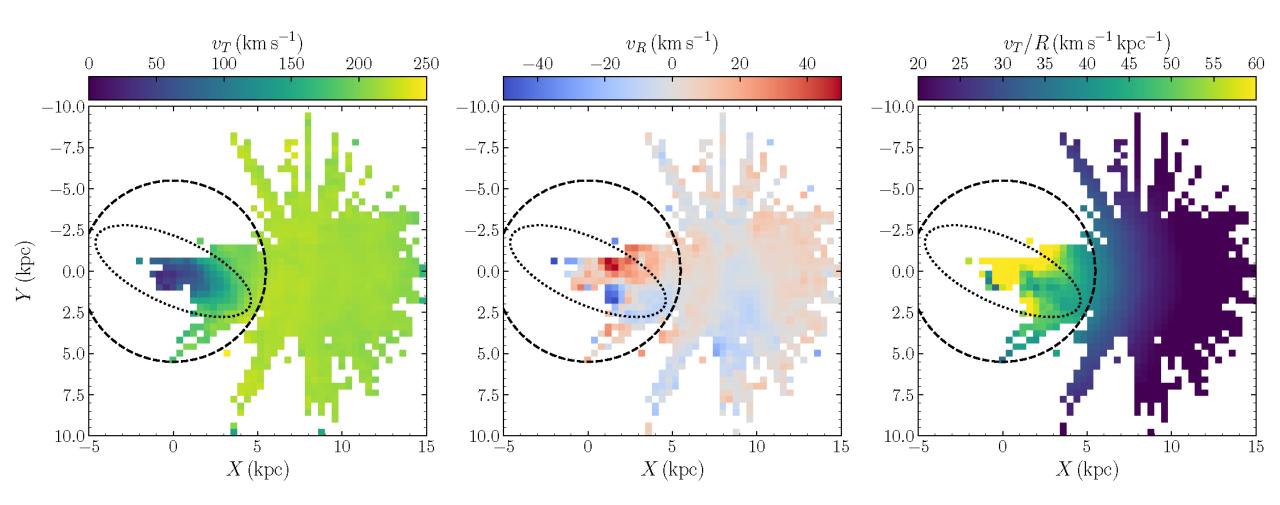


Henry W. Leung, Jo Bovy 2019

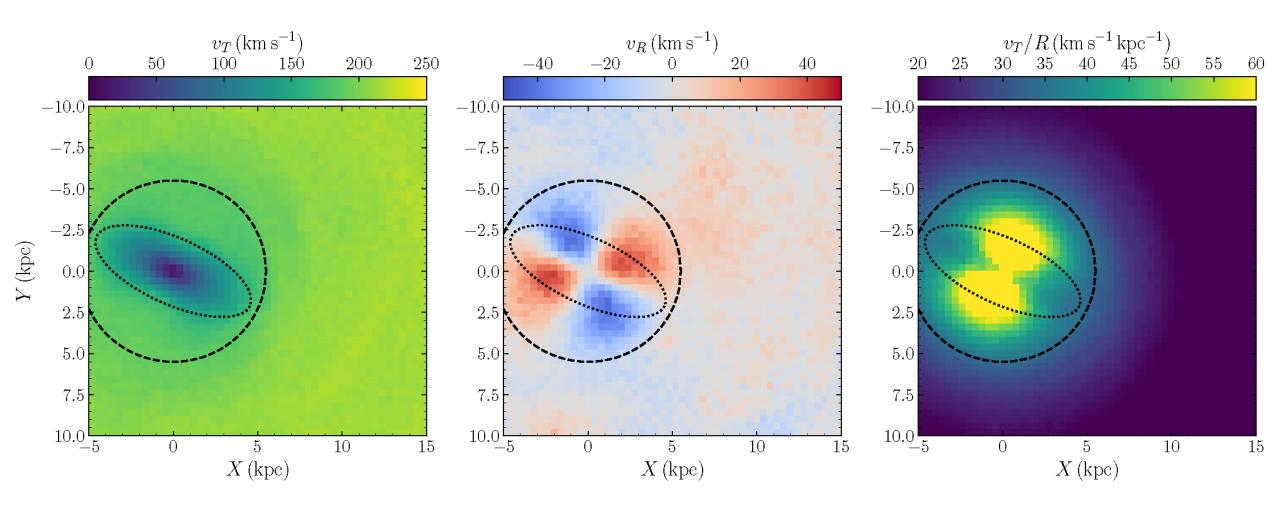
Signal-to-Noise comparison to Gaia DR2 using APOGEE DR14 spectra



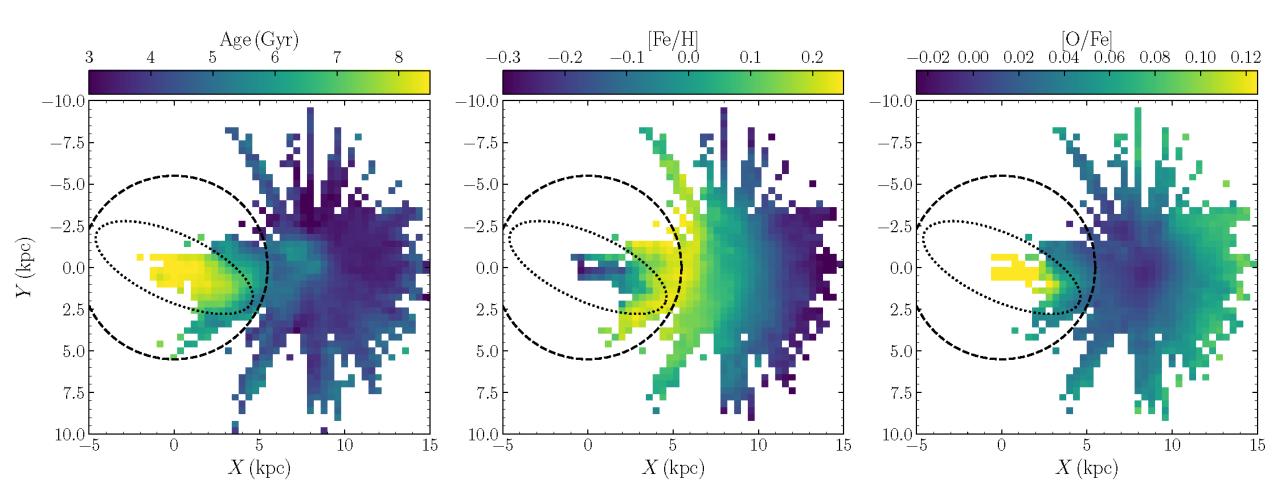
Henry W. Leung, Jo Bovy 2019



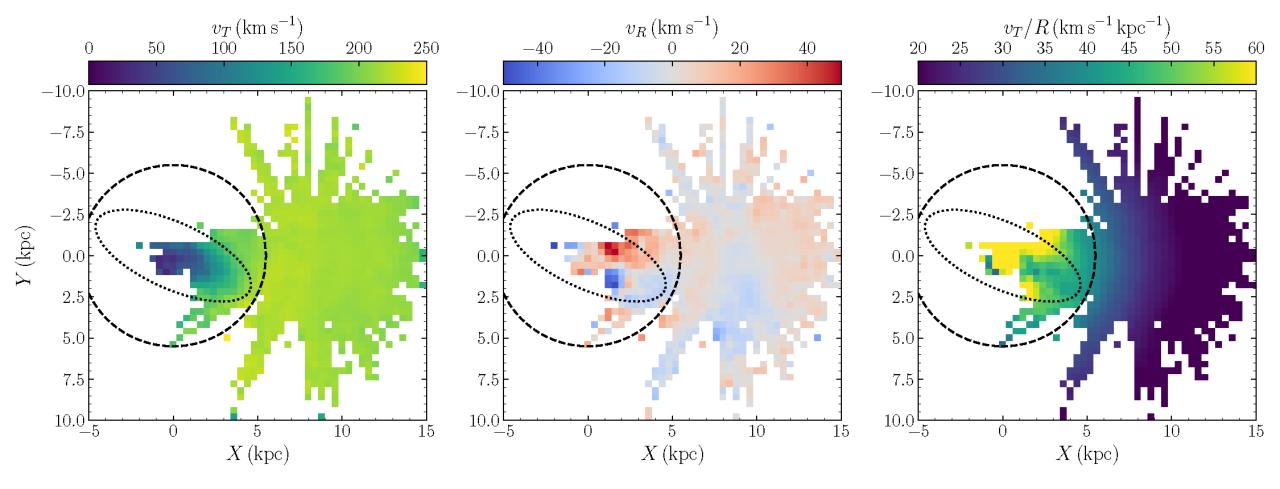
Jo Bovy, Henry W. Leung, et al 2019



Jo Bovy, Henry W. Leung, et al 2019



Jo Bovy, Henry W. Leung, et al 2019



Bar length: ~5kpc Bar pattern speed: ~41 km/s/kpc Bar age: ~8 Gyr

Jo Bovy, Henry W. Leung, et al 2019

Summary

- Bayesian NNs with Dropout VI w/ modified loss function
 - Account for Uncertainty/Incompleteness in training data, also produce uncertainty in prediction
- Structures NNs to reflect physical knowledge
- Develops a python package astroNN (<u>https://github.com/henrysky/astroNN/</u>)
- Data from NNs to map milky way (chemical/kinematics)
 - Real world scientific progress!
 - Formation, evolution and structure of milky-way
 - Data product available as SDSS Value-Added Catalog (DR16; Dec 2019)

henrysky