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ABSTRACT

Star formation rates (SFRs) are crucial to constrain theories of galaxy formation and evolution.
SFRs are usually estimated via spectroscopic observations requiring large amounts of telescope
time. We explore an alternative approach based on the photometric estimation of global
SFRs for large samples of galaxies, by using methods such as automatic parameter space
optimisation, and supervised machine learning models. We demonstrate that, with such
approach, accurate multiband photometry allows to estimate reliable SFRs. We also investigate
how the use of photometric rather than spectroscopic redshifts, affects the accuracy of derived
global SFRs. Finally, we provide a publicly available catalogue of SFRs for more than 27
million galaxies extracted from the Sloan Digital Sky Survey Data Release 7. The catalogue
will be made available through the Vizier facility.

Key words: methods: data analysis—techniques: photometric —catalogues — galaxies: dis-
tances and redshifts — galaxies: photometry.



Star Formation Rates

SFR measures the amount of stars generated each year in a
galaxy. It is proportional to the amount of light emitted by the

galaxy.

The light, depending on the frequency, probes a specific class
of stars present in the galaxy.

Usually the measurement requires:
e Dust absorption calibration;
e [IMF and metallicity assumption;
e Redshift correction;
e Spectroscopic follow up.

We have developed a ML approach to photometrically derive
SFRs for a large subset of the SDSS - DRY.
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[ Methods ]

[ Random ] [ MLPQNA ] [ PhiLAB ]
Forest




[ Methods ]

[ HER T ] [ MLPQNA ] [ PhiLAB ]
Forest

e Random forest (or random forests) is (are) an - \ .
ensemble classifier that consists of many decision g§ & é} }Q( P(

trees and outputs the class that is the mode of
individual trees output. dal FR

e The method combines Breiman's "bagging"” idea with P (Y = i = X) Bk ol
the random selection of features

e It naturally provides a Feature Importance Ranking i

pe(Y = clX = x)

Randomization

e Bootstrap samples
¢ Random selection of K < p split variables
e Random selection of the threshold

} Random Forests
} Extra-Trees




[ Methods ]

[ Random ] [ MLPQNA ] [ PhiLAB
Forest )
Artificial Neural Network: N:/:/& -
- consists of simple, adaptive processing units, called A
neurons
- the neurons are interconnected, forming a large network
- parallel computation, often in layers
- nonlinearities are used in computations
%
MLPQNA is a traditional MLP that implements as s
training algorithm the Quasi Newton Approximation L /| e
(QNA), Brescia et al. 2013 f b
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Able to solve the All-relevant feature selection!

"¢LAB

I.i--*“._____ PHILAB (Parameter Handling investigation LABoratory)

Based on two concepts: «shadow features» and Naive-LASSO regularization and exploiting Random Forest model as

importance computing engine.
SHADOW FEATURES represent the noisy versions of LASSO penalizes regression coefficients with an L;-norm
the real ones and their calculated importance can be penalty, shrinking many of them to zero. Features with

- - Il n
used to estimate the relevance of the real features. non-zero regression coefficients are “selected”.

contours of RES as

R move away from
/ﬂu edniemLm N
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B a'\ /f;.
\ h“\%m::‘upnmn
o A O B, 5
A shadow feature for each real one is introduced by et
randomly shuffling its values among the N samples of
LASSO RIDGE REGRESSION

the given dataset.

Kursa & Rudnicki 2010, Journal of Statistical Software, 36, Hara & Maehara 2016, Proceedings of NIPS 2016, Barcelona, Spain




Why all-relevant feature selection is challenging?

Random accuracy fluctuation: the impact of random fluctuation in the prediction/classification accuracy of a learning
system. Such effect, common in all real problems, may condition and mask the true importance contribution of a

weakly relevant feature.
Does not affect the selection of strong relevant features;

Obscuration of weakly relevance: the detection of weakly relevant features can be completely obscured by the
strongly relevant ones.

High-correlation compromise: in the frequent case of important features highly correlated, it is difficult to find the
exact relevance contribution of single features. Shall we equally partition their importance and assign the same

relevance?

Shadow features method is specialized to solve first issue, Naive-LASSO the third issue, while both solve the
second.
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(PLAB voting algorithm
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[ K-fold cv ] [ Completeness ] [ Feature selection ] [ RF vs Mlpgna ]




[ Experiments ]

[ K-fold cv } [ Completeness ] [ Feature selection ] [ RF vs Mlpgna ]
Model cross-validation no cross-validation

RMSE | Median | o |ffrqc | RMSE | Median | o |ffrac

RF 0.252 -0.021 |0.252| 1.99 0.252 -0.021 |[0.252 | 2.07

MLPQNA | 0.261 -0.016 |0.261| 1.76 0.261 -0.016 |[0.261| 1.78
Model ORMSE | OMedian Oo ONfrac
RF 0.001 0.00003 0.001 0.041
MLPQNA 0.002 0.00051 0.002 0.002

No need

Longer training




[ Experiments ]

[ K-fold cv ] [ Completeness ] [ Feature selection ] [ RF vs Mlpgna ]

Number of

training objects RMSE | Median o Nfrac

36,000 0.278 -0.022 0.278 1.99

100,000 0.265 -0.022 0.265 1.97 Problem not saturated

362,208 0.252 -0.021 0.252 | 2.03 Need for more samples
RF

Number of

training objects RMSE | Median o Nfrac

36,000 0.337 -0.015 | 0.337 | 1.53

100,000 0.281 -0.017 | 0.281 | 1.62

362,208 0.248 -0.017 | 0.248 | 1.99
MLPQNA



[ Experiments ]

[ K-fold cv ] [ Completeness ] [ Feature selection ] [ RF vs Mlpgna ]

L¢LAB

iiiih."_-_ PHILAB (Parameter Handling investigation LABoratory)

Able to solve the All-relevant feature selection!
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[ Experiments ]

[ K-fold cv ] [ Completeness ] [ Feature selection ] [ RF vs Mlpgna ]
Model RMSE | Median | o Nfrac
RF 0.252 | -0.021 0.252 | 2.03%
MLPQNA 0.248 -0.017 0.248 | 1.99%

7 Stensbo-Smidt et al. 2016 | 0.274 | 0.013 0.274 | 1.85%

T g

'_‘>s

s -9 [ImprovementoftheIiterature results}

= 10

g 11

212

o

L 13

13 -12 -1 -10 -9 -8 -7
SF Rsspectroscopic [M M o ' yr l]



[ Work in progress ]

e Filtered the KB for objects on which our BPT
classification matched Brinchmann'’s; ("

e Added WISE colors and magnitudes; ’ KB shrinking from 603,680
e Accounted for reddening; galaxies to 196,652

e DR?7 -> DR9 with updated SFRs. \-

Run RMSE Median n
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Thank You for the Attention

From this work we built a catalogue of
photometric SFRs for 27 million of galaxies
available on Vizier through the following link:




Feature Selection with ®LAB

What’s behind the ®LAB (Parameter Handling investigation Laboratory) project?....the property of feature importance
and relevance in the context of a parameter space used to approach any prediction/classification task with machine

learning methodology.

The importance of a feature is the relevance of its informative contribution to the solution of a learning problem.
The relevance of a feature can be formally defined as follows:
® Feature x is strongly relevant when removal of x from the parameter space always results in degradation of
learning accuracy
e Feature x is weakly relevant if is not strongly relevant and there exists at least one subset S of features such that
learning accuracy on S is worse than S U {x}
® Feature xisirrelevant if it is neither strongly nor weakly relevant.

feature selection problem taxonomy:

Minimal-optimal feature selection: selection of the smallest parameter space giving best accuracy. There are plenty of methods
proposed in literature, either for prediction and classification problems (PCA, leave-one-out, forward selection, backward elimination,
RF, PPS, Naive-Bayes, etc.).

All-relevant feature selection: the identification of the exact parameter space (all features) which are in some circumstances relevant
for the problem solution. Basically, finding all relevant features, instead of only the non-redundant or unuseful ones, may help to
understand the hidden mechanisms behind the problem. In more philosophical terms, it makes a predictive/classification model as a
gray box, instead of merely as a black box!

There are very few methods proposed in literature to solve this type of feature selection.




[ Methods ]

|‘ (I)LAB { PhiLAB }

-i-ii‘---..-- PHILAB (Parameter Handling investigation LABoratory)

Able to solve the All-relevant feature selection!

We include two naive LASSO technique in PhiLAB:

1. A-LASSO: creates a list of features alternate to those selected Trade-off between feature
by the standard LASSO, associating to each feature a score ’ selection performance and
reflecting the performance degradation from the optimal flexibility in the analysis of the
solution; PhiLAB selects onIy the features that achieve the parameter space. Degrading the
lowest score from the optimal solution. score solution to have more
flexibility.

2. E-LASSO: enumerates a series of of different feature subsets.
The optimal solution of a mathematical model is not always the ’ Chance to obtain a better solution
best solution to the physical problem. to the physical problem

Kursa & Rudnicki 2010, Journal of Statistical Software, 36, Hara & Maehara 2016, Proceedings of NIPS 2016, Barcelona, Spain
11




®LAB

[ Methods }

i“ih-n.-- PHILAB (Parameter Handling investigation LABoratory)

Kursa & Rudnicki 2010, Journal of Statistical Software, 36,
11

e

Able to solve the All-relevant feature selection!

a )
Candidate Weak relevant features are selected
through the shadow features filtering process

g J

4 )
Their importance is verified by A-LASSO and
confirmed by E-LASSO. (Parameter Space

\exploration) )

Hara & Maehara 2016, Proceedings of NIPS 2016, Barcelona, Spain



(PLAB voting algorithm

0. Let it be PS={x;...x\} the initial complete Parameter Space composed by N real features;

1. Apply the Shadow Feature Selection (SFS method) and produce the following items:

2.

YYVYVVYVY

SF={x_s;...x_sy}, the list of shadow features, obtained by randomly shuffling the values of real features;
IMP[PS, SF] for each x € PS & for each x_s € SF, the importance list of all 2N features, original and shadows;
st: noise threshold, defined as the max{IMP[SF], for each x_s € SF};

BR={x € PS t.c. IMP[x] > st}, the set of best relevant real features;

RF={x € PS, rejected by the Shadow Feature Selection}, the set of excluded real features, i.e. not relevant;
WR={x € PS t.c. IMP[x] < st}, the set of weak relevant real features;

From the previous step, it resulted that PS = {BR+WR+RF}. Now we consider the PS,.4= {BR+WR}, by excluding the rejected
features. In principle it may correspond to the original PS, in case of no rejections from the SFS;

a)

b)

If RF==p && WR==¢, the SFS method confirmed all real features as high relevant, therefore return ALL-RELEVANT(PS), i.e.
the full PS, as the optimized parameter space and EXIT.

If RF2p && WR==¢, the SFS method rejected some features and confirmed others as high relevant, therefore return ALL-
RELEVANT(BR) as the optimized parameter space and EXIT.

If WR#@, regardless some rejections, SFS confirmed the presence of some weak relevant features that must be evaluated by
LASSO methods, therefore goto 3;




(PLAB voting algorithm

3. Given PS,.4= {BR+WR}, the set of candidate features, apply E-LASSO method. It produces:
> EL_S, a list of M subsets of features, considered as possible solutions, ordered by decreasing score;
a) If WR € EL_S, then all weak relevant features are possible solutions, therefore return ALL-
RELEVANT(BR+WR) as the optimized parameter space and EXIT.
b) Else goto 4;
4. Given PS, 4= {BR+WR}, the set of candidate features, apply A-LASSO method. It produces:
> AL_S, a set of T features, each one with a list of features List(t) considered as alternate solutions with a
certain score;
a) if AL_S ==¢ then no alternate solutions exist, therefore:
i. If EL_S==¢ then return ALL-RELEVANT(BR) as the optimized parameter space and EXIT.
ii. Elseif EL_S#@ then return ALL-RELEVANT(BR+EL_S) as the optimized parameter space and EXIT.
b) Else extract for each t € T the alternate solution xas, t.c. Score(xas) = min{Score(y), V' y € List(t)},
c) gotob5.
4. For each x € WR:
a) If xis alternate solution of at least one featurete T, t.c. [te BR || t € EL_S], then retain x within WR set;

b) Else reject x (by removing x from WR);
5. Return ALL-RELEVANT(BR+WR) as the final optimized parameter space and EXIT.



