

Meteorite Hunt Using Deep Learning

Meteorite Center

Aisha AlOwais

Outline

- Introduction
- UAEMMN
- Objectives
- Dataset
- Deep Learning Algorithms
- Deployment
- Mechanism
- Future outlook

Introduction

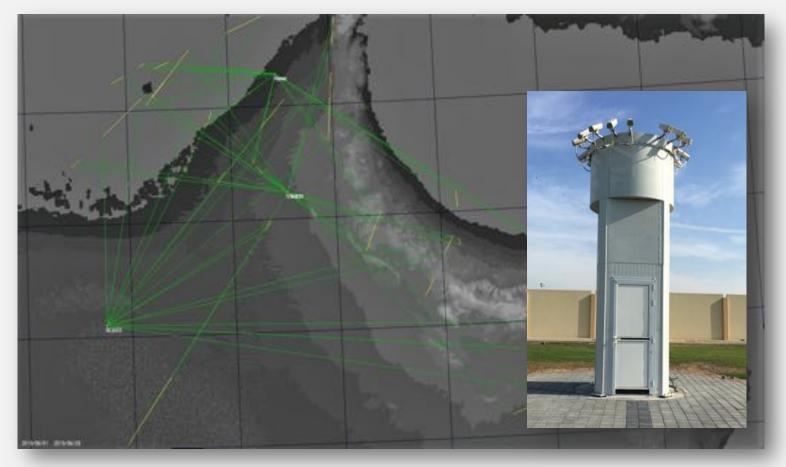
Conventional methods

Extreme Conditions

Big search parties

Time Consuming

Locating recent falls


The UAE Meteor

Monitoring

Network

SonotaCo software

programs

Objectives

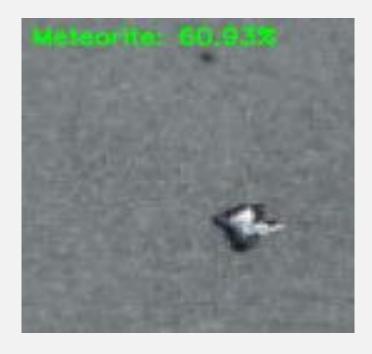
- Facilitate the process of meteorite hunting using deep learning techniques.
- Train a UAV on how to distinguish
 between meteorites & terrestrial rocks.

Building the dataset

- Iron meteorite class
- Tektites class
- Not-meteorite class
- Feature extraction
 - Fusion crust
 - Metallic
 - Regmaglypts
- On-going additions from the collection

Pre-trained architectures

	LeNet	InceptionV3	MobileNetV2	VGG16 (Trained from scratch)
Hidden layers	9	48	8	16
Learning rate	10e-3	10e-3	4.5×10e−2	10e-3
Epochs	25	30	50	100
Batch Size	32	32	32	32
Time	2-3 hrs	2-3 hrs	2-3 hrs	10-12 hrs
Drawback	Accuracy	Heavy	Heavy	Heavy



Preliminary Results



YOLOv3 - DarkNet

- 40k iterations or 10 epochs
- LR=0.00025 -> divided among 4 GPUs
- Batch = 64
- Training: ~2 day
- Training images: 637

YOLOv3 - TensorFlow

- Layers=106
- \circ Epochs = 30
- Training = 2.5 days

Tiny YOLO

- Layers=24
- Epochs=100
- Training = 6-7 hours

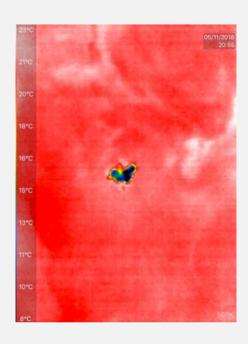
Deployment

ODJI Phantom Pro

○DJI Matrice 600

Raspberry Pi + essential accessories

o RPi Camera




Mechanism

Import images from the video feed as frames or folder Make a prediction about the image If true, save image along with the coordinates

Conclusion & Future outlook

- YOLO architectures are more likely to be relied on
- Crossing out rocks instead of detecting meteorites
- Thermal Imaging
- NVIDIA Jetson Nano

The team!

- Supervisor: Dr.Ilias Fernini
- Safa Naseem Physicist
- Omar Ghulam Chemist
- Anas Adwan Electric Eng.
- Takwa Dawdi Electric Eng.
- Yusra Elkalyoubi Electric Eng.
- Mariam Abdisalam Computer science major
- Khawla Ibrahim Mathematics major
- Mark Sukaiti Mathematics major
- Ahmad Faghihi Computer science major
- Nora Yahya Computer science major
- Donthi Sankalpa Computer science major

Questions?