Search of GW optical counterpart with the VST

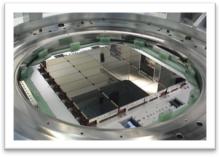
Aniello Grado INAF-Napoli Enrico Cappellaro INAF-Padova

the GraWITA team

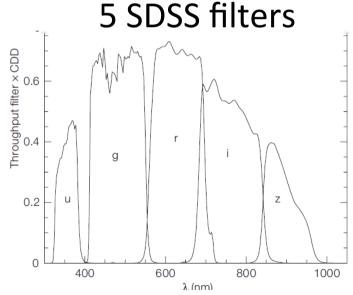
Center Space Fligh Credit: NASA's Goddard

A. Grado "Planning ESO Observations of future gravitational waves events" - ESO 2018-01-31

VST in a nutshell

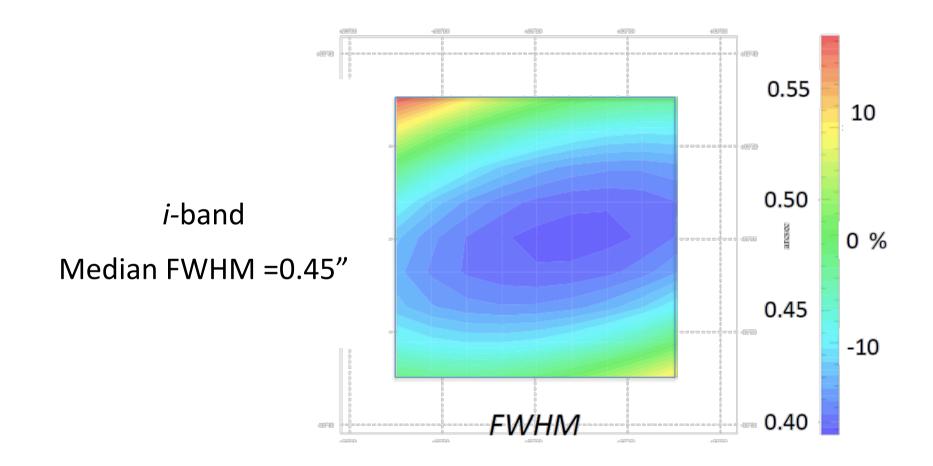


Located on Paranal Chile In operation since October 2011


Primary mirror: 2.6m
▶1.46 deg corrected FoV (∅)
▶80% EE in 0.4″

Camera OmegaCam

268 Mpixel 1°x1° FoV
 0.21 arcsec/pixel
 32 scientific CCDs + 4 outer CCDs



Founds, design and construction @Osservatorio di Capodimonte

VST performances: FWHM

VST regularly delivers images down to 0.5" FWHM uniformly over the whole field, with small ellipticities

VST Data Center @OACN

Vst Tube

- *SW*
 - VST-Tube
 - in house dev. pipeline for widefield images (Grado et al 2012)
 - Support 18 VST surveys
 - tailored on very wide range of science goals
 - > 50 papers based on
 VST-Tube reduced data
- *HW*
 - Dedicated computer room
 - beowulf cluster ~ 300 cores
 - ~ 1 PB data storage

VST optical follow-up of gravitational waves In the framework of GraWita

Two companion programs on GTO time (in reward of telescope and camera construction):

- On *VST-GTO*: PI A. Grado
- On *OmegaCam-GTO*: E. Cappellaro

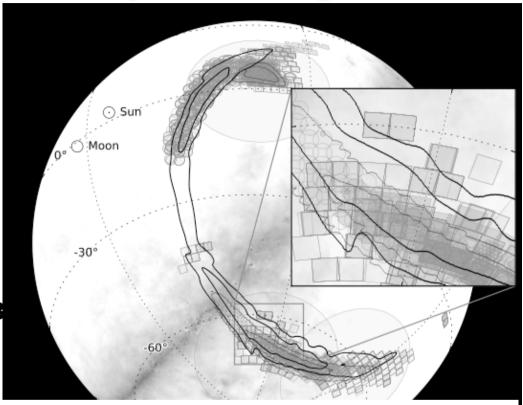
We start with a negotiation with ESO to have the VST in ToO mode.

Since P95 ToO and follow-up programs.

Up to now allocated 240h on these surveys

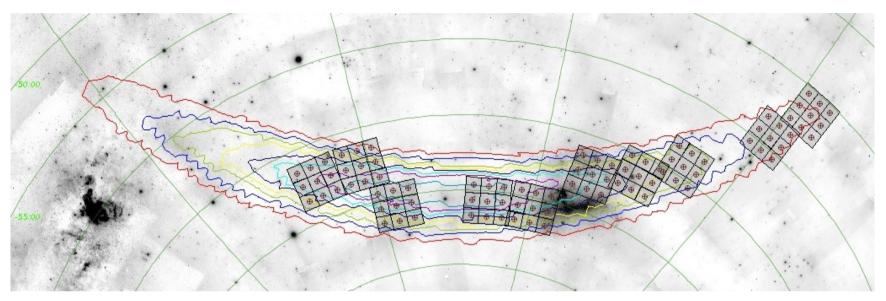
GW follow-up Data Flow

 The pipeline is checking every 10 minutes if new data with a specified



PROG-ID appears on the ESO archive

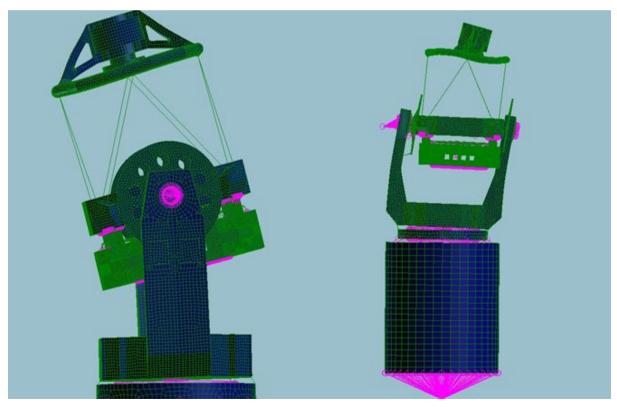
- From Paranal to Garching archive:
 - Time after which 75% of the file are received: 6.3 min
 - Time after which 90% of the file are received: 8.3 min
- If available the data are downloaded
- When a pointing is completed and available on local storage the pipeline starts the processing
- If the pointing has been already processed (in a previous epoch) the final mosaic will be pixel registered on the previous one (for image subtraction)
- ~ 10 min to get a fully calibrated coadded image ready for analysis (from when we have the data locally).


GW150914 EM sky coverage

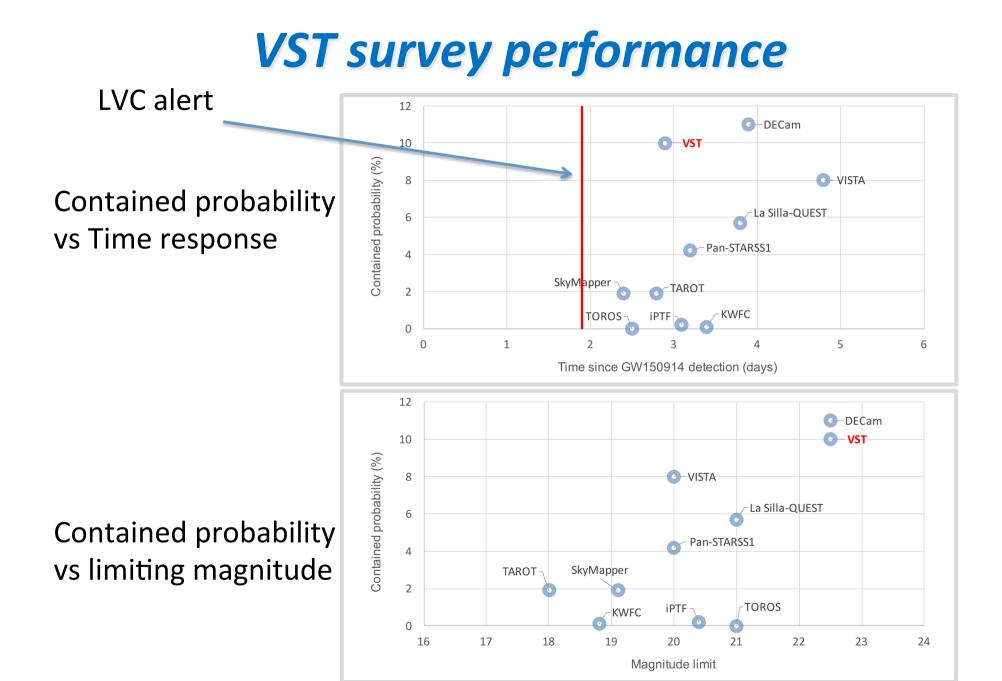
24 observatories involved !! 19 orders of magnitude in frequency space + neutrino search IceCube/ Antares (+/- 500s) LVC-EM, APJL,826,1 L13,2016 Antares,IceCube, LVC, Phys. Rev. D93 122010,2016

Initial GW Burst Recovery				Updated GCN Circular (identified as BBH candidate)		Final sky map ■	
<i>Fermi</i> GBM, LAT, I IPN, <i>INTEGRAL</i> (at		Swift XRT	Swift XRT				Fermi LAT, MAXI
BOOTES-3	MASTER	Swift UVOT, SkyMa Pan-STARRS1, KWFC, (PTF, Keck , Pan-STARRS1 y, PESSTO , UH VST	TOROS
		:	MWA	ASKAP, LOFAR	ASKAP, MWA	VLA , LOFAR	VLA, LOFAR VLA
	10	0	t - tw	nerger (days)	10 ¹		10 ²

First event GW150914

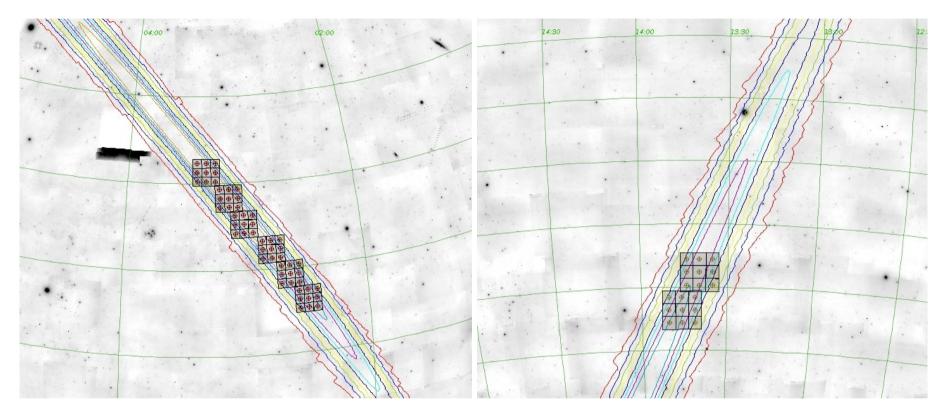


Blocks of 3x3 deg² 2x40 s dithered images (to fill ccds mosaic gaps) **90 deg² in 6 epochs** (over 2 months) 29% of the localization probability for cWB sky map enclosed 10% considering the LALinference sky map (shared with observers on 2016 January 13)


Pointings obtained with GWsky (Greco et al. in preparation)

GW150914

First observations: 23h after the alert (GCN 18336 Brocato et al.) (the first "big" high resolution telescope to cover the area) Illapel (200Km from Paranal) earthquake in Chile September 16 at 19:54 Chilean Time Mw=8.3! (observations started 7 h later)



Courtesy: Francesco Perrotta

Data from Abbott et al 2016

Second event GW151226

72 deg² in 6 epochs

First obs 7.6 hours after the alert and 1.9 days after the merger event (GCN Grado et al. 2015).

9% of the initial BAYESTAR sky map and 7% of the LALinference sky map

EM counterpart search: a very tough task

Find ONE transient in the GW box error. For the first two events 90% enclosed prob. ~ 200-1000 deg²

- 10-50 SN
- > 100 AGN
- Thousand of variable stars
- Thousand of asteroids

Transient search

Two complementary pipeline for transients search

diff-pipe images differences (Cappellaro et al 2015)

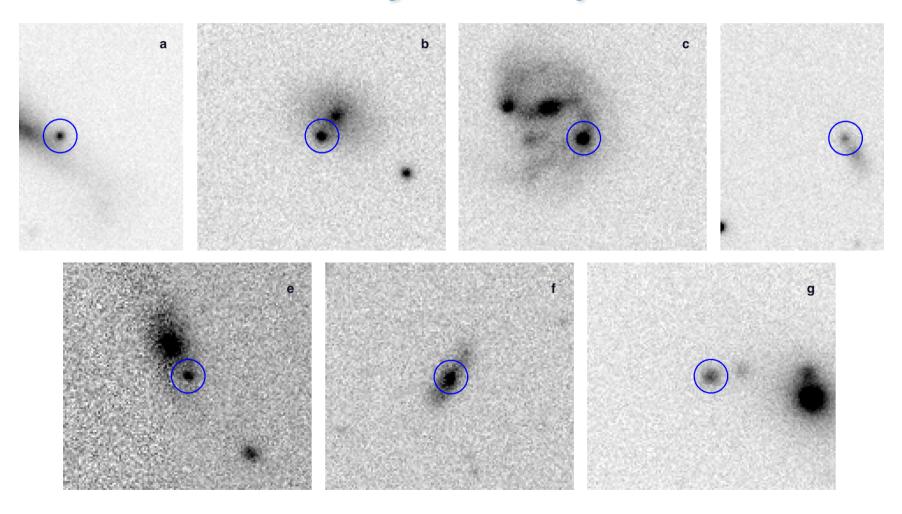
PRO: deeper (with good seeing, transients detected up to r=22 mag AB), for crowded fields, source embedded in extended objects; CON: slow, more sensible to images defects

phot-pipe (S. Covino) comparison among epochs in catalog space

PRO: fast;

CON: shallower, missing transients in extended sources...

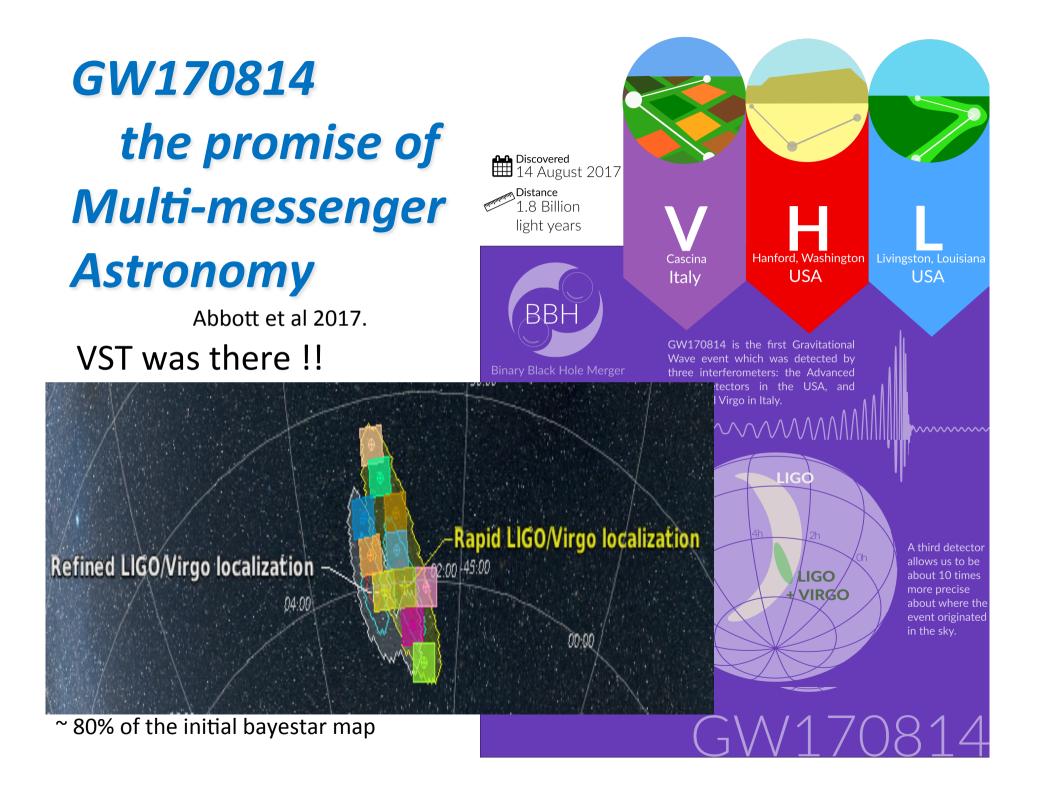
Results for GW150914 event


	Diff-pipe	Phot-pipe
Initial number of sources in all epochs	9,000,000	9,000,000
Initial # of candidates	170,000	54,239
Total # of transients	8,000	939
# known variables 🤇	6722	1
# of known SN in the field/detected	4/4	
# new SN candidates	7	

Brocato et al. 2018 MNRAS, 474, 411

Evident spurious and known variables already removed

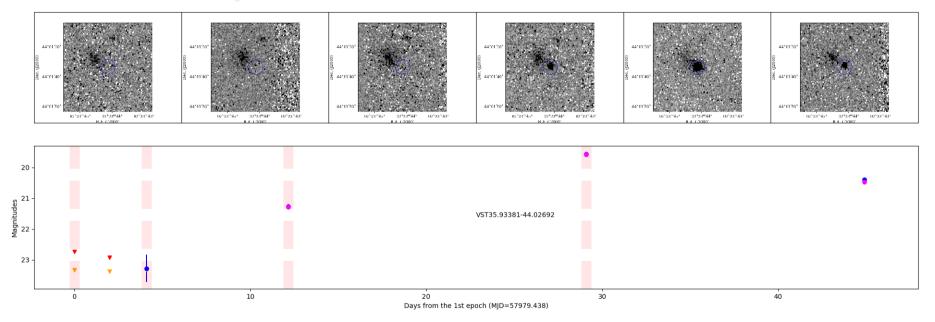
VSTJ57.77559-59.13990 SN lb/c candidate possibly associated with Fermi-GBM GRB 150827A

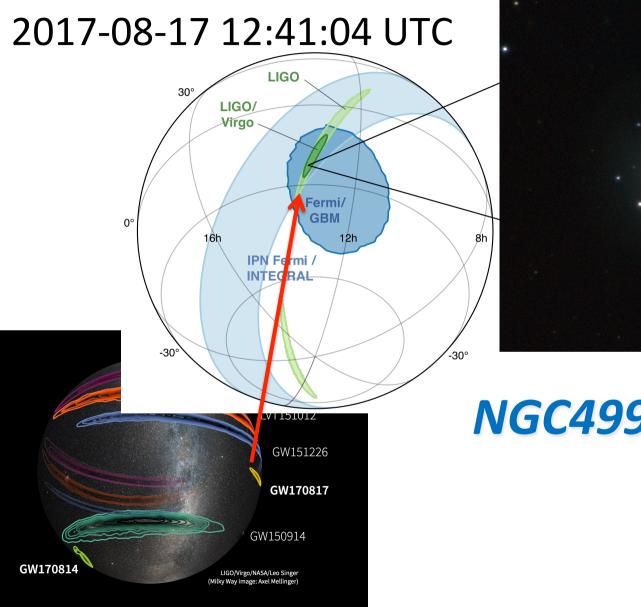

SN candidates in the GW150914 VST follow-up

Results for GW151226 event

	Diff-pipe	Phot-pipe
Initial number of sources in all epochs	~ 900,000	~ 900,000
initial # of candidates	6,310	4500
total # of transients	3,127	305
# known variables	54	1
# minor planets (within 10")	3670	
# of known SN in the field/detected	54/17	
# new SN candidates	4	
ato et al. 2018 MNRAS, 474, 41	1	·

Spurious and known variables already removed

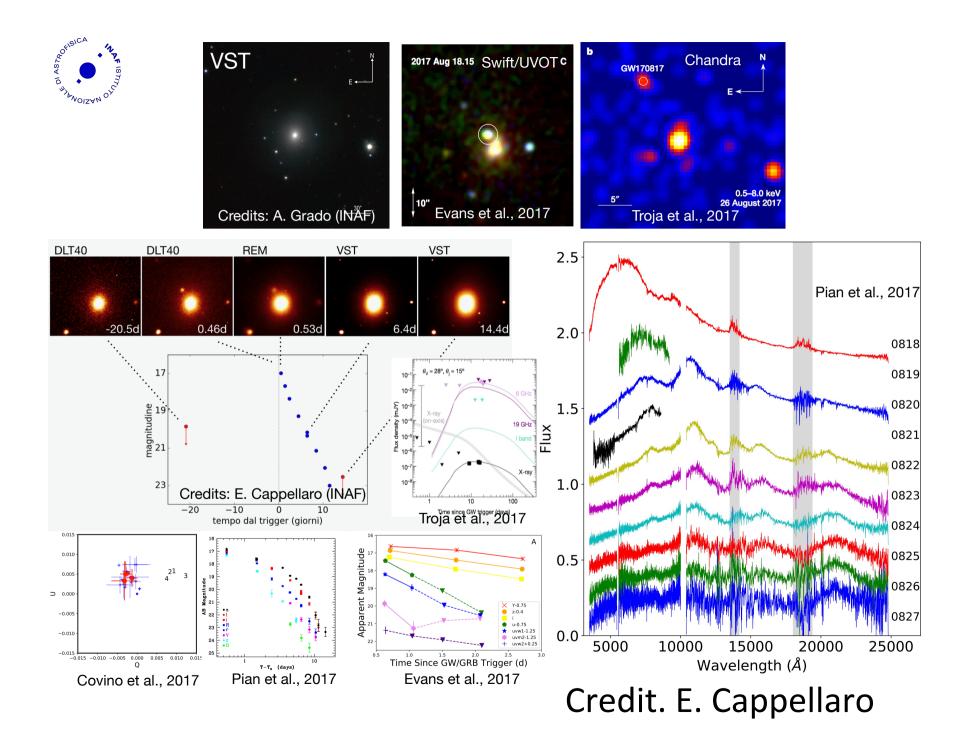


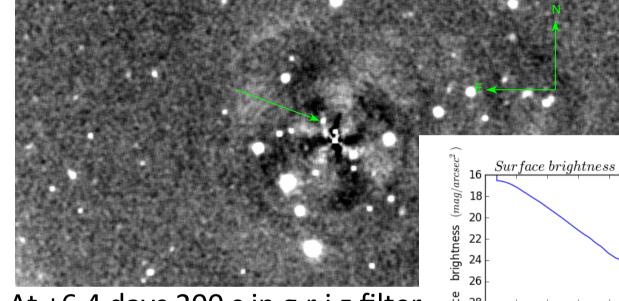

Diff-pipe found 495 optical transients Phot-pipe found 230 optical transients


A. Grado et al. in preparation

SN candidate from the VST search in GW170814

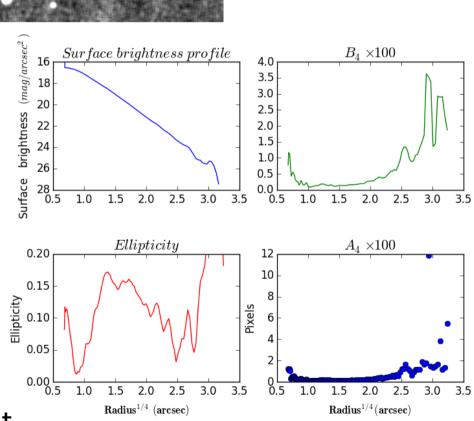
The watershed




NGC4993@ VST

GW170817 @VST

GW event:	12:41:04	UTC
First skymap:	17:54:51	UTC
31 deg ² (90% credibility)		
centered on 12h57 ^m -17°51'		
VST observations of GW170817:	23:18:42	UTC
covering 9 deg ²		
Swope OT observation:	23:33	UTC
(targeted survey) GCN21529		
Updated skymap:	23:54:40	UTC
34 deg ² (90% credibility)		
centered on 13h09 ^m -25°37'		



Smoothed residuals of isophotal elliptical fit

At +6.4 days 200 s in g,r,i,z filter GCN 21703 A. Grado et al. 23.3, 22.4, 21.3, no visible in z

At +14.4 days 1200 s in i filter
GCN 21833 A. Grado et al.
No detection (22.53 50% complet.
for pointlike surces)

NGC 4993

r filter

O3 and beyond

• O3 expected rate for BNS: 1- few dozens events in 12 months

Alert issued in few minutes without human wetting

- We foresee to allocate up to P107
 - **50** hours/semester on VST-GTO
 - ~30 hours/semester on OmegaCam-GTO

In ~4 hours we cover 90 deg² 2x40s dithered exposures.

NON TARGETTED SEARCH

Assuming 6 epochs we can observe from ~2.5 (90 deg²) to ~8 events (30deg²)/semester

Conclusion

- The multi-messenger Astronomy is started
- GW optical follow-up has an important role
- Among the optical observation facilities VST is an important player in particular with VIRGO in action
- We plan to follow ~ 2.5 to 8 events/semester

Open points/Future actions

- How we can secure observations in the follow-up?
- Can we interrupt/modify OB "on the fly" to meet refined map?
- Can we reduce access time to ESO archive data?
- We plan to increase the VST data processing speed
 - In both HW and SW sides
- For faint transients (detectable with ~ deep surveys) still work needed to shorter the candidates list for further spectroscopic follow-up

A HUGE thanks to the ESO User Support and Paranal staff

Thanks

NGC 253 VLT Survey Telescope (A. Grado, L. Limatola)

Area covered for each epoch GW150914

Epoch	Night	Area (deg ²)	Total (deg ²)
1	2015-09-16	54*	54
2	2015-09-17	90	90
3	2015-09-21	90	81
4	2015-09-24	90	90
5	2015-09-30	72	
	2015-10-02	18	90
6	2015-10-13	45	
	2015-11-15	9	
	2015-11-16	18	
	2015-11-17	18	90

Epoch	Night	Area (deg²)	Total (deg ²)
1	2015-12-27	72	72
2	2015-12-29	72	72
3	2015-12-30	9	
	2016-01-01	45	
	2016-01-02	9	63
4	2016-01-05	18	
	2016-01-06	18	
	2016-01-07	27	63
5	2016-01-13	45	
	2016-01-14	27	72
6	2016-01-28	9	
	2016-01-30	9	
	2016-01-31	18	
	2016-02-01	9	
	2016-02-02	9	
	2016-02-10	9	63

GW151226