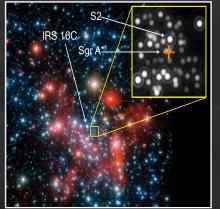
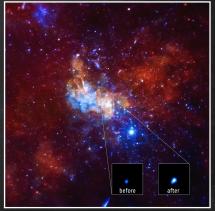

GRAVITY prospects for GR physics

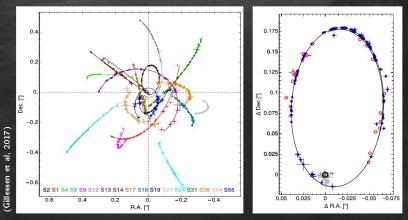


Odele Straub

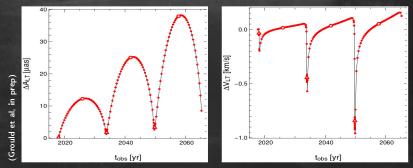

LESIA/LUTH - Observatoire de Paris

How is GRAVITY doing GR physics?

(ESO/MPE/Gillessen et al)

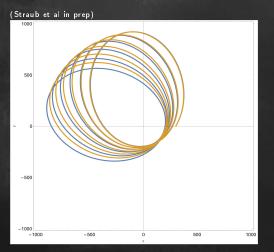


(NASA/CXC/Amherst College/Haggard et al)


* Sgr A* is the biggest BH in the sky (d $\approx 53\mu$ as for $a_* = 0$). * GRAVITY performs μ as-astrometry on nearby stars and flares.

Stellar orbits 1: the S2 star

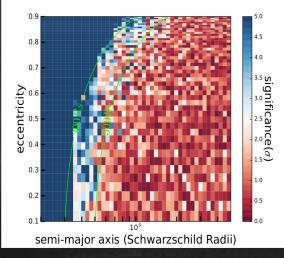
- * S2 star: shortest period (16y), second closest ($R_{peri} \approx 2000$ $R_S = 17$ lh, where v = 0.025 c)
- * Current data consistent with Keplerian orbit
- ★ Next pericenter passage in 2018!


Stellar orbits 2: GR with S2

The combination of astrometric (left) and spectroscopic (right) observations (10 μ as, 10 km/s accuracy) should allow to detect the transverse Doppler effect and gravitational redshift in *a few months*; higher-order relativistic effects (e.g. grav. lensing) in *a few years*

- $\star \ \Delta = \mathsf{R}_{peri}, \ \circ = \mathsf{R}_{apo}$
- \star simulated data for $a_*=0.99$ and 2 periods of monitoring \rightarrow best fit constrains spin: $0.8 < a_* < 1$

Stellar orbits 3: constrain the BH mass

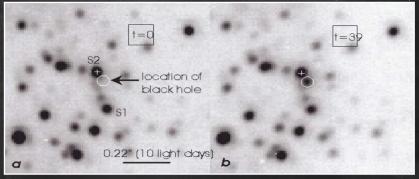


 ★ Schwarzschild BH → prograde orbits (blue)

- ★ Schwarzschild BH with extended mass distribution (1% of M_{SgrA*} is dark mass)
 → retrograde orbits (orange)
- ★ allows to constrain the mass distribution

Stellar orbits 4: constrain the BH spin

(Waisberg, Dexter et al. in prep)

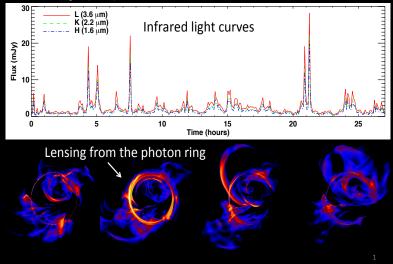

Required eccentricities to measure the BH spin for a typical observing campaign of 4 years with 10 μ as astrometric error.

sma = R_{peri} σ : best-fit for $a_* = 0.9$

6

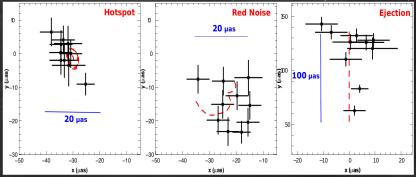
Sgr A* flares 1

(Genzel et al, 2003)



 \star Flares are recurrent bursts of radiations in the IR & X-ray

- \star models: inefficient flow with hot spot, jet, red noise...
- Why is this interesting? variability (ca 20-40min) corresponds to near ISCO radius, i.e. the strong gravity regime


Sgr A* flares from shock heating

Dexter & Fragile (2013)

Sgr A* flares 3: centroid tracks

(GRAVITY simulation by Vincent et al. 2014)

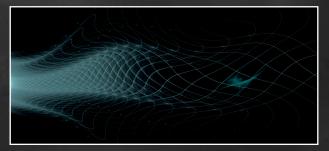
- ★ Flares: Hot spot, red noise, or jet?
- \star GRAVITY can distinguish between the models if $t_{flare} \geq 1.5 {
 m h}$
- ★ Some flares models allow to constrain the BH spin and inclination

GRAVITY prospects for GR physics -Things to take home

 stellar orbits around Sgr A*: GRAVITY is capable of finding deviations from Keplerian orbits, it can distinguish between a non-rotating and a rotating BH within a few months of observation, it can put constraints on the BH mass and the BH spin

 flares from Sgr A*: GRAVITY is capable of distinguishing between different flare models, from the best fitting model it can constrain the BH spin and inclination

Acknowledgements


Main collaborators of the presented work:

- LESIA Marion Grould, Thibaut Paumard, Guy Perrin, OS, Frederic Vincent
- MPE Jason Dexter, Frank Eisenhauer, Reinhard Genzel, Stefan Gillessen, Oliver Pfuhl, Idel Waisberg
- * Uni Köln Andreas Eckart, Christian Straubmeier

Institutes:

The end

(Artwork: Tom Allen @ Fractamonium/Deviantart)