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Why common envelope?

» Compact stars in close
Dinary systems

» Reduction in binary orbit - ~
needed Major source of
> Examples: ) uncertainty in modeling! )

> Type la supernovae
» Planetary nebulae

» Black hole binaries

> [ X N )
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[-) Compact stars in close systems}
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Problems in modeling

» 3D geometry

» Wide range of scales (time, space)

Compact core ¢ dilute envelope

> Approximations necessary:
RG core and companion as point masses

->Spiral-in on dynamical time
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The AREPO code

» Developed by V. Springel for cosmological applications

» New feature:
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The AREPO code

» Developed by V. Springel for cosmological applications

» New feature:
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The AREPO code

» Developed by V. Springel for cosmological applications

» New feature:
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Shear instability

Credit: V. Springel
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Simulating the CE phase

> Initial conditions: giants in hydrostatic equilibrium (Ohimann et al., 2017,
A&A, 599, A5)

» Core > point mass

» Relaxation method - stable giant models
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Simulating the CE phase

> Initial conditions: giants in hydrostatic equilibrium (Ohimann et al,, 2017, A&A,
599, A5)

» Core »> point mass

» Relaxation method - stable giant models

»2 M, RG + 1 M, companion, using ideal gas EOS (Ohlmann et al. 2016, ApJ,
816, L9)

» Only 8% of envelope mass ejected

» Instabilities: shear > convection
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Simulating the CE phase

> |nitial conditions: giants in hydrostatic equilibrium (Ohtmann et al, 2017, A&A, 599, A5)
» Core > point mass

> Relaxation method - stable giant models

»2 M, RG + 1 M, companion, using ideal gas EOS (Ohlmann et al. 2016, ApJ, 816, L9)

» Only 8% of envelope mass ejected

» [nstabilities: shear > convection

> First MHD simulations (Ohlmann et al. 2016, MNRAS, 462, L121)
» Strong amplification > 10 - 100 kG, probably MRI

» Not strong enough for magnetic WDs
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lonization state

> might help ejecting the envelope

» Long discussion (Livio 1989, ..., Nandez+ 2015, 2016
g

> First SPH simulations (Nandez+ 2015, 2016) show ejection of
envelope when including recombination energy

» Included by using OPAL equation of state
» Assumption: radiation is trapped

» Radiative transport?
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Orbital Evolution
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« Same 2M_RG + 1 M_system

* Very similar orbital evolution > determined by gravitational interaction

* <5% difference in semi-major axis
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Density evolution

100R

t=0.00d
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t=0.00d
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> |deal EOS: only ~10% unbound

> OPAL 1.0
1.50
» ~ 50% after 800 d a5 0
» [ncreases further to ~ 90% at 3 1.00 + 06 2
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> |deal EOS: only ~10% unbound

> OPAL 1.0
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Unbinding mechanism

» First orbit: unbinding small amount
» Fast spiral-in: lift envelope to larger radii

» Expansion - lower T and rho
> release of recombination energy

» This energy release drives slow mass ejection
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Light

» Determine photosphere

curves: method

> Integrate opacities along rays - optical depth
» GetTsatT =1

» Assume blackbody radiation with T

> Integrate over a

» Convolution wit

l rays -

N band fi

luminosity

ters = bands, colors

> Slightly simpler method than Galaviz+ (2017)

30



104] : |

L |erg/s]

0O 500 1000 1500 2000 2500 3000
Time [d]

Terr [K]

Light curves

10000

9000

8000

7000

6000

5000

500 1000 1500 2000 2500 3000

Time [d]

» Peak at ~ 3yrs, photosphere receding afterwards

> Temperature:

» Recombination front (~ 6000 K)

» Peaks due to shock layers being revealed
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Light curves
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-6 F — g
] | | ] ]

i

0 500 1000 1500 2000 250
Time [d]

0

3000

AB color - SDSS g-u

R A A A R R
v e N e
e e R N “ Y e R

» Peak at ~ 3yrs, photosphere receding afterwards

> Temperature:
» Recombination front (~ 6000 K)

» Peaks due to shock layers being revealed
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Comparison: observations

» CE phase connected to Luminous Red Novae (lvanova+, 2013)

» Most observed objects:

» Lower luminosity

» Shorter plateau

» Estimate according to Ivanova+ (2013) for the simulation
(SN [IP model)

» L ~5.5e38 erg/s
» plateau~ 150 d

> radiation treatment missing!
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Modeling of radiation

» Up to now:

» Radiation pressure in EOS

» Recombination radiation trapped

» But: radiated energy > binding energy
- cooling should be included

» Future: couple radiation transport to simulation
> radiation hydrodynamics
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Conclusions

> Recombination energy helps ejecting envelope -

» Recombination enerqgy drives slow ejection

((((((((

> Light curves
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» Future:

» Extension to other parameters

» Radiation hydrodynamics
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Thank you!

100R& t=0.00d
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