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Golden anniversary




N7 First known GRB detected 214
Golden anniversary [ frown Gi5 deice

satellites. Strong & Klebesadel 1993
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Rapid variability of prompt emission (in some
bursts) suggests compact progenitor.

«  Compactness and non-thermal spectrum resolved if
emission produced through dissipation after ultra-
relativistic expansion.

«  Requires low baryon pollution.




Two populations
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* Obviously overlap
 Detector dependent

» Redshift dependent
(in complicated
ways)

Kouveliotou et al. 1993
Mazets et al. 1982



Hosts

Actively star forming,
typically low

Fruchter et al. 2006
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GRB 930425/ SNI8bw Galama e al. 1995
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S'7 GRB 130427A © SN-less GRBs _
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Similarity of GRB-SN

Despite the ~6 order of mag difference in GRB luminosity, the accompanying
SNe look rather similar, including possible “peak-mag decline-rate” relationship.
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The enVIFOHment §  From hosts and afterglow spectroscopy,

mostly low (at least ~sub-solar) metallicity.
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GRBs seem to roughly follow sub-solar metallicity SF

10-20% of GRBs Rest wavelength (um)
occurring in
relatively massive
and dusty hosts,
but still favour -
1<Z, star ;0\* M. GRB rate supp
formation. -
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GRBs seem to roughly follow sub-~solar metallicity SF
Rate vs. Metallicity
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LGRBs have a
strong intrinsic
preference for low
metallicity
environments.

Somewhat lower Z cut-
off from the lower
redshift events (but
includes several “low-
luminosity” GRBs).



Relativistic fireball

“Standard picture” ultra-relativistic jet (I'~300) produces prompt emission via
internal shocks from shell collisions within jet, and afterglow emission via
shocking of ambient medium.

Zhang et al. 2004



Requirements for engine and star

Accretion on BH

Rapid rotation  j > 10! cm? s°!

Envelope stripped

Massive core



Single and/or binary channel? Yoon et al. 2006

BH (SNIb/c)

BH (SN II)

BH (SN Ic)

Rapidly rotating single star models
=~ chemically homogeneous evolution
quire Z <~ 0.1 Z, to retain sufficient final angular momentum to make




Single and/or binary channel?

CE Envelope (H)

Podsiadlowski
etal. 2010

aries also hard to to prevent loss of J. One possib
explosive common envelope ejection during case

ss transfer = should work up to ~solar metallic




Retonization of the intergalactic medium
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Retonization of the intergalactic medium

The intergalactic medium went from being completely neutral to completely
ionized, in the era between z=10 and z=7 (strongest constraints from CMB)

z=12.8




lonizing escape fraction

Generally assumed some fraction of ionizing radiation from stars escapes their
host galaxies.

If this is not reasonably high (>10%) at z>6 then becomes hard to envisage
reionization being driven primarily by stars.




lonizing escape fraction

Studies at z~2-3 generally find low values of <~few %, although some
exceptional systems.

Weak constraints for (dominant population) of faint galaxies.
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Long-GRBs

Correlation with UV
light suggests sight-
lines to GRBs should be
representative of sight-
lines to ionizing stellar
populations.
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H column density from Ly-a absorption n afterglow spectra

GRB091029
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Provides direct upper limit on escape fraction on each line of sight.




HI column density evolution
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High column densities seen in optical spectra of most 2<z<4 NT et al.
GRBs suggest escape fractions for these stellar pops of <~1 %. (subm. soon)




Relative number of SNlc
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Single burst stellar population synthesis, based on binary evolution BPASS-2
models (Stanway & Eldridge 2016) — most production is ¢+ <10 Myr,
consistent with typical GRB progenitor lifetimes (and SNIc).




Factors making this upper limit stronger

1. There is a bias against locating and measuring redshifts for the high NH
(dusty) systems (especially at higher redshifts). Also the low NH systems
may also have dust absorption.

2. Neutral gas proximate to the progenitor is likely to be ionized by the GRB
and early afterglow, so we may underestimate the the column in some
cases.

Also note:

~ No clear trend with host UV magnitude (proxy for star formation rate), or
stellar mass.

~ Only marginal reduction in NH at z>5 (but statistics poor)



Two populations
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What about the
short-duration
events?
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Short-duration bursts

Long thought to be likely NS~NS or NS-BH mergers, due to timescales,
energies and lack of compelling alternatives. Association with variety of
stellar populations and some “hostless” supports this hypothesis.
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Various possible
evolutionary
pathways to creation.

During merger, some
material is ejected (tidally,

through collisional debris
and disk winds).
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Compact binary mergers = foem e et ey o

astrophysical phenomenal

Inspiral Dynamical Accretion Remnant

blue
kilonova

r-process
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Other EM signatures

r- and s-process synthesis paths

s-process path: along
“valley of p-stability”
7" and terminating at Bi
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r-process path: may
extend down to “neutron
drip line”
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Radioactive decay powers
(isotropic) transient, but

high opacity may lead to
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Predictions of behaviour require highly complex physics.

Tidal ejecta — very low Y, — high optical opacity — slower/redder — more isotropic

Disk wind — neutrino irradiation — higher Y, — lower opacity — faster/bluer — less isotropic



GRB 1 3060 SB Constraining the kilonova

Tanvir et al. 2013

9 day 30 day



GRB 1306038  ...or, much ado about a data-point

Time since GRB 130603B (days)
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X-ray signal?

The ‘kilonova’ GRB 130603B, had an X-ray excess in addition to IR bump

suggested that the KN could be substantially powered by central
engine activity via isotropic X-ray emission.
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ESO/VISTA programme

a NICMOS

Near-~IR optimised




Conclusions

* Important questions remain concerning the progenitors of long-GRBs €.2.




