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Q: What produces the antimatter (positron
annihilation emission) in the Milky Way?

NASA/DOE/Fermi/LAT

* Positrons: anti-matter particle of the common
electron.

 Gamma ray satellites reveal the Galaxy is a strong
source of 511 keV emission. The emission Is evidence
for annihilation of positrons (~5 x10743 per s)!

 What could be the source” 40+ year old problem.



Possible sources”?

StarTrack DTD for RCBs; channel 3 in KRH 2015
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o Dark matter particle annihilation”

@©
=
QO
(92}
=
<
N
o
o
=2
o
~

S

* Milky Way supermassive black hole”

e Flaring microquasars”

number (fro

e Core collapse SNe? Thermonuclear SNe?

0
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Delay Time for HeWD+COWD channel of RCBs [Myr]

* None of these sources can fully explain simultaneously the emission
spatial morphology and the injection energy (which is rather low).

o Recent finding for MW positron luminosity:

L_bulge / L_disc ~ 0.4 = approx stellar mass ratio bulge/disc. This
suggests that source is related to (old) stars (see Siegert et al. 2010).

For a stellar source: can figure out what the characteristic age (or ‘delay
time’) has to be for an adopted Galactic SFH (van Dokkum+ 2013, Snaith+
2014). Use Starlrack binary pop synth code (Belczynski et al. 2008).



Type la supernovae

main proposed progenitors: single degenerate; double degenerate, etc.
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DD, prompt detonation (sub-MCh),
or possible accretion toward MCh?

X (10 cm)

core degenerate, merger in a ‘classic’ double detonation: usually
common envelope, explodes later. WD+He-rich star; M slow or fast.




91bg-like SN progenitors

Ami5(B) —>

Super—Chandrasekhar

Just to clarify: WE DON'T KNOW ANY
OF THE SN la PROGENITORS!

91bg are fainter than ‘'normal’ SNe la;
typically found among old stellar
populations.

Postulated by Pakmor et al. 2013 to
arise from mergers of He + CO white
dwarfs.

OZ2es—like
Some He+CO WD mergers produce SNe la

R Coronae Borealis variable stars
(see Han 1998; Karakas, Ruiter &
Hampel 2015), while others could Luminosity 91bg-like
produce faint Type la supernovae .
(Crocker et al. 2017).

Adapted from Taubenberger 2017



Why do we think HeWD+COWD
mergers are likely the 1991bgs”

StarTrack DTD for RCBs (KRH 2015)
e Old stellar population 1991bg-like SNe
(galactic bulge-like).
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* Nuclear burning of helium
can plausibly give the
amount of titanium-44
that can explain antimatter
(positron signal) in the
Milky Way. (cf. Woosley et
al. 1986).

m
]
=
©
£
e
n
=
<
N
o
S
S
o
S
M
S
o
-
=
—
@
Q
S
>
c

(%2
(@)

) A SUb_Set Of CO+He_riCh 2000 4000 6000 8000 10000 12000 14000
WD mergers have the Delay Time for HeWD+COWD mergers (all channels) [Myr]

right delay times ~4+ Guyr. Based on Karakas, Ruiter & Hampel (2015)
‘channel 3’ for R Coronae Borealis (RCB) formation.
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e Binary evolution population
synthesis (binaries evolved in
the field, e.g. no N-body / triples)

o Starlrack code evolutionary

channel leading to He-CO
double WD merger: ‘

1. ZAMS masses ~1.5 -2 Msun

2. low-mass (~0.3 - 0.35 Msun) ‘
He WD forms first via RLOF
envelope stripping

3. CO WD (~0.55 - 0.6 Msun) ©® {CE} O
forms later via CE event on the
early AGB
® ® Hestar

4. WDs merge ~4000 Myr -
Hubble time after star formation

HeWwD @® COWD



STARS FORM
>5€|3r‘ AGO

S A4-2 Mo ZAMS MASS

BINARY SYSTEM,

/™ ”1

Y-RAYS FRoM
e* ANNIHILATION

Galactic positrons:
Ti-44 decay from

Origin of

THIN He-L4

He-detonations

‘\n WD mergers.

i

He-L; DETONATION TRIGGERS
THERMONUCLEAR SUPERNOVA

S

/e

\

S DUST GRAIN \

Figure by Fiona H. Panther

o a i

o - PROCESS
SYNTHESISES Ti- L4

N 1(

Ti-Ll — Sc—lbhh—» Ca-L4 + €7




To do!

* PhD student Fiona Panther observed
host populations of historic 91bg
SNe to derive SN ages (delay
times). Consistent with our
predictions (Panther et al. in prep).

* Merger simulations to determine e.g.
How does the helium detonate” How
much Ti-44 is synthesised? (require
0.013-0.03 Msun per event).

From S1: 7.15"E, 30.56"S Berkeley

UGC 9798 (91bg-like host galaxy): 1 kpc region around explosion site 2007ba

WiFeS
F. Panther
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Two WD merger formation channels with Starirack:
CO+He and CO+CO

R Coronae Borealis: © o O O Type la Supernova:
merger between merger between
Hewd+cowp @ @ @-»e  COWD + COWD
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¢ e 0 common envelope

common envelope 0 -
CO primary accretes from

e O *¢® helium-burning secondary:
increase in mass ~0.2 Msun

e O
Karakas, Ruiter & Hampel ° Ruiter, Sim, Pakmor et al.

2015, Apd 809, 184 . @ 2013, MNRAS 429, 1425
®



Binary evolution channels: What follows after ZAMS depends
on initial masses, mass ratio, separation, [eccentricity]
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DDS: 93.2% 2.41
AMCVn: 4.0%  0.90
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