

The Impact of Binaries on Stellar Evolution ESO Garching, July 6, 2017

Ashley J. Ruiter

with R. Crocker, I. Seitenzahl, F. Panther, S. Sim et al.

Explaining Galactic antimatter with faint thermonuclear supernovae

CAASTRO Research Fellow Research School of Astronomy & Astrophysics Mount Stromlo Observatory The Australian National University

Visiting Fellow Australian Defence Force Academy Dept of Physical, Environmental & Mathematical Sciences University of New South Wales Canberra

Article

Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations

Roland M. Crocker [№], Ashley J. Ruiter, Ivo R. Seitenzahl, Fiona H. Panther, Stuart Sim, Holger Baumgardt, Anais Möller, David M. Nataf, Lilia Ferrario, J. J. Eldridge, Martin White, Brad E. Tucker & Felix Aharonian

Nature Astronomy 1, Article number: 0135	Received: 09 September 2016
(2017)	Accepted: 12 April 2017
doi:10.1038/s41550-017-0135	Published online: 22 May 2017
Download Citation	
Download Citation Download Citation	

Q: What produces the antimatter (positron annihilation emission) in the Milky Way?

VASA/DOE/Fermi/LAT

- Positrons: anti-matter particle of the common electron.
- Gamma ray satellites reveal the Galaxy is a strong source of 511 keV emission. The emission is evidence for annihilation of positrons (~5 x10^43 per s)!
- What could be the source? 40+ year old problem.

Possible sources?

- Dark matter particle annihilation?
- Milky Way supermassive black hole?
- Flaring microquasars?
- Core collapse SNe? Thermonuclear SNe?
- None of these sources can fully explain simultaneously the emission spatial morphology and the injection energy (which is rather low).
- Recent finding for MW positron luminosity:

L_bulge / L_disc ~ 0.4 = approx stellar mass ratio bulge/disc. This suggests that **source is related to (old) stars** (see Siegert et al. 2016).

For a stellar source: can figure out what the characteristic age (or 'delay time') has to be for an adopted Galactic SFH (van Dokkum+ 2013, Snaith+ 2014). Use *StarTrack* binary pop synth code (Belczynski et al. 2008).

Type la supernovae

main proposed progenitors: single degenerate; double degenerate, etc.

SD, e.g. delayed detonation: MCh mass WD explodes.

core degenerate, merger in a common envelope, explodes later.

DD, prompt detonation (sub-MCh), or possible accretion toward MCh?

D. A. Aguilar

'classic' double detonation: usually WD+He-rich star; *M* slow or fast.

91bg-like SN progenitors

- Just to clarify: WE DON'T KNOW ANY OF THE SN Ia PROGENITORS!
- **91bg** are <u>fainter</u> than 'normal' SNe Ia; typically found among old stellar populations.
- Postulated by Pakmor et al. 2013 to arise from mergers of He + CO white dwarfs.
- Some He+CO WD mergers produce **R Coronae Borealis** variable stars (see Han 1998; Karakas, Ruiter & Hampel 2015), while others could produce faint Type la supernovae (Crocker et al. 2017).

Why do we think HeWD+COWD mergers are likely the **1991bg**s?

- Old stellar population (galactic bulge-like).
- Nuclear burning of **helium** can plausibly give the amount of **titanium-44** that can explain antimatter (positron signal) in the Milky Way. (cf. Woosley et al. 1986).
- A sub-set of CO+He-rich WD mergers have the right **delay times** ~4+ Gyr.

- Binary evolution population synthesis (binaries evolved in the field, e.g. no N-body / triples)
- *StarTrack* code evolutionary channel leading to He-CO double WD merger:
- 1. ZAMS masses ~1.5 2 Msun
- 2. low-mass (~0.3 0.35 Msun) He WD forms first via RLOF envelope stripping
- 3. **CO WD** (~0.55 0.6 Msun) forms later via CE event on the early AGB
- 4. WDs merge ~4000 Myr -Hubble time after star formation

To do!

- PhD student Fiona Panther observed host populations of historic 91bg SNe to derive SN ages (delay times). Consistent with our predictions (Panther et al. in prep).
- Merger simulations to determine e.g. How does the helium detonate? How much Ti-44 is synthesised? (require 0.013-0.03 Msun per event).

1 ng (M/

Two WD merger formation channels with *StarTrack*: CO+He and CO+CO

Binary evolution channels: What follows after ZAMS depends on initial masses, mass ratio, separation, [eccentricity]

Iben & Tutukov 1984

