Evidence for past Roche-lobe overflow in two O-type binaries

Gregor Rauw¹, Françoise Raucq¹, Laurent Mahy^{1,2}, Yaël Nazé¹, & Eric Gosset¹

¹ Liège University, Belgium
 ² KU-Leuven, Belgium

Outline

Mass and angular momentum transfer in massive binaries.Methods.

- HD149404: a detached post RLOF binary
- LSS3074: a contact binary with odd properties
- Conclusions and open issues.

Mass and angular momentum transfer in massive binaries

A large fraction (~ 80%) of massive stars are found in binary systems (Sana et al. 2012, Science 337, 444, Duchêne & Kraus, 2013 ARA&A 51, 269) and many of them will interact at some point of their evolution (de Mink et al. 2014, ApJ 782, 7).

- Several aspects of the binary interaction in massive stars are not yet well constrained:
 - What fraction of the transferred mass is accreted, and what fraction is lost (e.g. Petrovic et al. 2005, A&A 435, 1013)?
 - Does the common envelope phase lead to merger events or does it produce double degenerate systems (e.g. Kruckow et al. 2016, A&A 596, A58)?
 - What fraction of the angular momentum is removed by material that is lost from the system (e.g. De Donder & Vanbeveren 2004, New AR 48, 861)?
 - Theoretical work needed, but observational studies of massive post-RLOF systems are also scarce: only about a dozen good candidates of post-RLOF O-star binaries are known (Nazé et al. 2017, MNRAS 467, 501) and only a handful have been studied in detail.

Methods

- Determination of properties of the binary components requires access to the individual spectra of both stars in addition to orbital parameters.
- Spectral disentangling based on the method of González & Levato (2006, A&A 448, 283) + model atmosphere fitting using CMFGEN (Hillier & Miller 1998, ApJ 496, 407) to derive fundamental properties such as T_{eff} , log g, v sin(*i*) and chemical abundances (C, N, O, He).

- Method previously applied to HD47129 (Linder et al. 2008, A&A 489, 713) and LZ Cep (Mahy et al. 2011, A&A 533, A9).
- Evidence for a past RLOF episode was found in these systems:
 Strong abundance anomalies due to removal of the mass donor's outer layers.
 - Asynchronous rotation due to transfer of angular momentum.
 - Over- or under-luminosities compared to single star evolutionary tracks of same mass.
 - E.g. HD47129 = Plaskett's Star (O8III/I + O7.5III, $P_{orb} = 14.4$ days, e = 0):

	Primary	Secondary
v sin i (km/s)	66 ± 9	310 ± 20
He/He _. ,	1.17 ± 0.35	1.76 ± 0.53
C/C	0.2 ± 0.1	1.0 (fixed)
N/N _¢	16.6 ± 5.0	0.2 ± 0.1

HD149404: a detached post RLOF binary

- HD149404: O7.5 If + ON9.7 I, P = 9.81 days, e = 0.0 (Rauw et al. 2001, A&A 368, 212)
- ON spectral-type \rightarrow good candidate for chemical enrichment due to case-A RLOF.
- Spectral disentangling based on FEROS and Coralie echelle data previously used for orbital solution (Raucq et al. 2016, A&A 588, A10):

- Inferred abundances incompatible with single star evolution.No detectable enhancement of He abundance.
 - [N/C]_{secondary} ~ 150 [N/C]_{\bigcirc} consistent with predictions for post case B mass exchange, but HD149404 should be a post case A system.

91 (Bard	Primary	Secondary	2
M (M _{<i>j</i>})	50.5 ± 20.1	31.9 ± 9.5	
He/He	1.12 (fixed)	1.12 (fixed)	
C/C	0.38 ± 0.04	0.07 ± 0.02	$ \begin{array}{c} $
N/N _¢	1.95 ± 0.30	10.6 ± 3.2	
0/0 _{.j} ,	1.50 ± 0.22	0.16 ± 0.03	-1 -1 -1 0 1 2 $\log (N/0)$

- Primary star rotation period $\sim \frac{1}{2}$ secondary star rotation period (\approx orbital period).
- HD149404 has undergone case A RLOF where the present-day secondary was the initially more massive star (Raucq et al. 2016, A&A 588, A10).

LSS3074: a contact binary with odd properties

- LSS3074: O5.5 If⁺ + O6.5-7If, P = 2.185 days, e = 0.0 (Raucq et al. 2017, A&A 601, A133)
- Of⁺ star = transition object between O and WN star
- Previous studies reported surprisingly low dynamical masses (Morrell & Niemela 1990, ASPC 7, 57).
- Analysis based on high-resolution FEROS and EMMI spectra + ANDICAM (B, V, R, I) photometry.

	Primary	Secondary	
T_0 (HJD - 2450000)	2000.851	1 ± 0.008	
$\gamma (\mathrm{kms^{-1}})$	-66.0 ± 5.0	-21.7 ± 4.7	
$K ({\rm km}{\rm s}^{-1})$	228.5 ± 7.1	196.0 ± 6.1	
$a \sin i (R_{\odot})$	9.9 ± 0.3	8.5 ± 0.3	
$q = m_1/m_2$	0.86 ± 0.04		
$m\sin^3 i (M_{\odot})$	8.0 ± 0.5	9.3 ± 0.7	
$R_{\rm RL}/(a_1 + a_2)$	0.37 ± 0.01	0.39 ± 0.01	
$R_{\rm RL} \sin i (R_{\odot})$	6.7 ± 0.2	7.2 ± 0.2	
$\sigma_{ m fit}$	3.11		

- N III, N IV and NV lines mostly follow orbital motion of primary star
- Hα emission line displays complex variations with Doppler map suggesting circumstellar material (colliding winds?) but nothing alike an accretion disk or jet of material between the stars.

CMFGEN analysis of disentangled spectra (Raucq et al. 2017, A&A 601, A133) fails to simultaneously reproduce the strength of the N III, N IV and NV lines.

	Primary	Secondary
He/He _. ,	2.80	1.0
C/C	≤ 0.24	≤ 0.08
N/N _¢	8.4 ± 5.2	5.5 ± 1.3
0/0 _{<i>j</i>}	≤ 0.05	≤ 0.02

- Spectroscopy yields brightness ratio (primary/secondary) of 2.50 ± 0.43 .
 - But photometric data reveal ellipsoidal variations consistent with over-contact configuration and brightness ratio of 1.09!

Parameters	Primary	Secondary	
i (°)	54.5 ± 1.0		
$q = m_1/m_2$	0.86 (fixed)		
Filling factor ^a	1.008 ± 0.010	1.008 ± 0.010	
$T_{\rm eff}({\rm K})$	39 900 (fixed)	34 100 (fixed)	
$m(M_{\odot})$	14.8 ± 1.1	17.2 ± 1.4	
$R_{\rm pole}(R_{\odot})$	7.8	8.4	
χ^2	1820.7		
$N_{\rm d.o.f.}$	415		

Inferred inclination yields dynamical masses of only 14.8 (O5.5 If primary) and 17.2 M^{*} (O6.5-7If secondary)!

Overall stellar parameters do not concur with those of genuine Ostar supergiants, but could be biased by strong radiation pressure making LSS3074 an **O-supergiant impostor** similar to Cyg OB2 #5 (= V729 Cygni, Linder et al. 2009, A&A 495, 231).

Binary properties suggest that the system is currently in a slow phase of case B RLOF and is evolving into a WR + late O binary system (Raucq et al. 2017, A&A 601, A133).

Conclusions and open issues

HD149404 underwent a RLOF episode that stopped before the entire outer envelope of the mass donor was removed.
LSS 3074 is likely in an over-contact configuration, on its way to become a CQ Cep – like WR binary.

	Spectral type	P _{orb}	Asynchronicity	[N/C] / [N/C]
LSS3074	O5.5 If ⁺ + O6.5-7If	2.185 days	~ 1	> 35
LZ Cep	O9 III + ON9.7 V	3.07 days	~ 1	~ 180
HD149404	O7.5 If + ON9.7 I	9.81 days	~ 2	~ 150
HD47129	08 III/I + 07.5 III	14.4 days	~ 5	~ 80

Spin-up of the mass gainer due to momentum transfer seems more efficient in wider systems as expected (Langer 2012, ARA&A, 50, 107), but *trend* needs further confirmation.

Possible rejuvenation of primary star in HD149404 (Raucq et al. 2016, A&A 588, A10).

Primary and secondary star currently fill ~52 and ~87% of their Roche lobes (Raucq et al. 2016, A&A 588, A10).

	This study		
	Prim.	Sec.	
$R(R_{\odot})$	19.3 ± 2.2	25.9 ± 3.4	
$M(M_{\odot})$	50.5 ± 20.1	31.9 ± 9.5	
$T_{\rm eff} \ (10^4 {\rm K})$	3.40 ± 0.15	2.80 ± 0.15	
$\log\left(\frac{L}{L_{\odot}}\right)$	5.63 ± 0.05	5.58 ± 0.04	
$\log g$ (cgs)	3.55 ± 0.15	3.05 ± 0.15	
β	1.03 ^f	1.08^{f}	
$v_{\infty} (\mathrm{km}\mathrm{s}^{-1})$	2450 ^f	2450 ^f	
\dot{M} (M_{\odot} yr ⁻¹)	9.2×10^{-7f}	3.3×10^{-7f}	
BC	-3.17	-2.67	