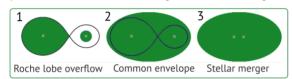
Interactions between Massive Stars and the Interstellar Medium

J. Bodensteiner¹², J. Greiner², D. Baade³, A. C. Carciofi⁴, N. Langer⁵, T. Rivinius⁶

- ¹ Technical University of Munich, Germany
- ² Max Planck Institute for extraterrestrial Physics, Germany
- ³ European Southern Observatory, Germany
- ⁴ Universidade de São Paulo, Brazil
- ⁵ Argelander Institute for Astronomy, Germany
- ⁶ European Southern Observatory, Chile


Contact: boden@mpe.mpg.de

Abstract

We visually inspect four samples of massive stars in WISE 22 μ m data in the search for associations with extended IR emission. We report associations with such nebulae in ~ 7% of all OBA stars in the Bright Star Catalogue (BSC), with a steep decline towards later spectral types. Besides well-known bow shocks with their typical sickle-like shape, we find other morphologies like round or elliptical nebulae. We propose that at least some of them are the remnants of non-conservative mass transfer that took place in previous close binary interactions.

Motivation

- * ~ 70% of massive stars interact with a binary companion during some time of their evolution [Sana et al. 2012]
- * possible interaction channels [Podsiadlowski 2001]:

- * the mechanism leading to the nearly critical rotation of classical Be stars remains unknown [Rivinius et al. 2013]
- * one of the main theories: spin-up due to mass transfer in binary interactions (channel 1 & 3) [de Mink et al. 2009]

Methods

- * input samples: ~ 3800 OBA stars in the BSC, ~ 200 Be stars in the BSC, ~ 70 BeXRBs, 6 Be+sdOs
- * visual inspection of the surroundings of all stars in WISE data at 22 μm
- ' classification in four morphological groups:

aligned bow shocks: - sickle-like - α < 20° - offset to star

not aligned

how shocks:

no bow shocks:

circular / ellipticalno offset

others:

low resolutionbackgroundcontamination

Results

Stars with nebulae

BSC stars

- aligned bow shocks sickle - like 12 % ≤ 20° not aligned bow shocks sickle – like ≥ 20° 55 22 % ves round / elliptical no bow shocks 21 % nο 53 others ambiguous 45 %
- * 28% | 13% | 0.4% of all O | B | A stars are associated with IR nebulae in WISE data at 22 μm
- * associations detected at all Galactic latitudes => no chance coincidence with fore- or background ISM
- * different physics for different morphologies:
 - bow shocks (aligned or not aligned)interaction between stellar wind and ISM
 - circular / elliptical / diffuse nebulaeremnants of previous binary interactions ?
- * five confirmations with BeXRBs and Be+sdOs

Discussion

- * binary interactions can lead to non-conservative mass-transfer which means that material is lost from the system
- * depending on the interaction, the matter lost from the system may be sufficient to create a dusty circumstellar nebula visible in the IR
- * detection rates are lower limits because of finite lifetimes of nebulae

prominent examples:

ζ Oph O9.2IVnn

V = 2.56

τ Sco B02.V V = 2.81

48 Lib B8la/lab 1 V = 4.87