Science & Technology
@ Facilities Council

Binary %5 CAMBRIDGE
Population 8 —Fioa
Synthesis

COLLEGE

Robert lIzzard

Institute of Astronomy
and
Churchill College

University of Cambridge



IMBASE 2017 — Robert Izzard



| A
il »
L |
~
‘ i
b
4

%;;I L=

How do they function?
How did they get here?
What are they going to do?
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How did they get here?
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What is Population Synthesis
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What is Population Synthesis

Equivalent single star initial mass (M)
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Justification: Data and Big Data

* Now: Gaia/ESO, Kepler, | l '

Data in AStronomy e

SDSS (APOGEE etc)
* Now/soon:

— Gaia

Uberbytes

— BHBH mergers etc.

* Soon:

2000 2005 2010 2015 2020

Date

IMBASE 2017 — Robert Izzard (Graph is not necessarily to scale)
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Stellar Accountancy

Let’s count stars!

tmax tmax

N = ZS(t)Zw,Z 0;(t—T)AT
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Stellar Accountancy

tmax tmax

N = ZS(t)Zw,Z 0;(t—T)AT

N is the number of stars you are counting
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Stellar Accountancy

tm aX tmax

N = ZS(t)Zw,Z 0;(t—T)AT

Evolve stars from t=0 to t

Star formation rate is S(t)
Often choose S=1 then calculate ratios: S cancels!

(~ removes one important source of systematic error)
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Stellar Accountancy

tm aX tm ax

N = ZS(t)Zm/J,Z §i(t—T)AT

At time t evolve a grid of n systems with 0<i<n
Each is weighted by function
Initial mass function, or g, P, e distributions
Couldbe 2 2 2 X X ...
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Single stars : vary M

5(15|25|35{45|55(65| 75|85

—————————————————————————-

Initial mass / M,

Uncertainties: talks of Salaris, Langer, many others

IMBASE 2017 — Robert Izzard



Binary-star

Initial orbit (period or separation)

Parameter

Space

At least 3D!

Initial secondary mass M,

Initial primary mass M,

+ tides,mass loss,accretion,pollution,comenv,discs,jets,
novae,supernovae,kicks,grav.radiation,mergers, etc.
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Stellar Accountancy

Lrax Lmax —

N = ZS(t)Zw,Zé (t—T)AT

Star evolves foraslongasitmust: t -7

Stellar codes work in timesteps At
we sum over those required

IMBASE 2017 — Robert Izzard
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Stellar Accountancy

N = mZaXS(t)Zzp,mi 0;(t—T)AT

disa functlon WhICh is
1 if in the evolutionary phase of interest
0 otherwise
Must be evaluated at each timestep At
binary_c has >200 such functions
- REQURIES SINGLE / BINARY STELLAR EV. CODE ¢
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N = Number/event counts

IMBASE 2017 — Robert lzzard Sana et al. 2012 (Science 337,444) 17



N - Distributions of objects

# stars per bin

1.4 1.6 1.8 2.0

@ Schneider, Izzard, Langer et al. (ApJ, 20148



N — 2+D distributions: parameter study

logy, P (days)
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Computation time

* Single stars: (M)
N x 1 hour = N hours = 10 hours with N=10 8
e Binary stars: Y(M; x M, x P)
N x N x N x 2 hours = 2N3 hours = 2000 hours

An expensive problem!
* Especially for rare channels which need large N (>100)
* Or difficult channels e.g. TPAGB stars, explosions

* Need to be smart about this!
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What about (binary) stellar
evolution codes?

IMBASE 2017 — Robert Izzard
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* Use traditional (Henyey) code

— STARS (+family), BEC, BINSTAR, Brussels, MESA, Geneva(?),
Benvenuto’s code etc.

— Beware: likely to require human intervention, will crash
— Cannot model some phases, e.g.,

Common envelope

(super)novae
jets
STARS code
backup server ”

IMBASE 2017 — Robert lzzard };f’



* STARS family, Brussels, BEC, BINSTAR, MESA, ...

* Usually 1D + 1D + binary interaction terms

Centre
‘ .

k-1

k

Binary
Physics

k+[1

e “Accurate”, well-tested = "

Star 1

_____

— Few approximations required.

— (Except 1D, MLT+, d2/dm, [no]B-field, dM/dt, T__...)

— Physics (very) detailed and flexible m -.

* “Slow”: typically hours — days

IMBASE 2017 — Robert Izzard 23



* Use traditional (Henyey) code
— STARS (+family), BEC, BINSTAR, PNSxi), MESA, Geneva...

* Offload ~detached (“well-understood”) stellar evolution
“Synthetic” stellar evolution codes

Code summary: De Marco & lzzard (2017) Tablezz
IMBASE 2017 — Robert Izzard 4



Example: Zero-age main sequence
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Example: Zero-age main sequence

* SSE/BSE library - Eggleton, Fitchett, Tout 1989,
Pols+ 1998, Hurley et al.2000, 2002

( 3 9
1.107M°+240.7M
[n = < 1+281.9M4 M < 1.093
) 13990M_ M > 1.093
L M*+2151M24+3908M+9536 = =

(

0.1148M'254+0.8604M5-2°
Rh = ¢ 0.04651+ M2 M < 1.334
L 1.968M*357—0.7388M 1070 1 < 1 334
. 1.821M?2:337—1 = L.

“Simple” formulae : fast to calculate.

Can also use table lookup (faster?).

>10° times faster than a detailed code.

Stable (at least compared to a real stellar code) but inflexible.
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* Traditional (Henyey) code
— STARS (+family), BEC, BINSTAR, PNSxi), MESA, Geneva, etc.

* Offload ~ detached (“well-understood”) stellar evolution
“Synthetic” stellar evolution codes

— SSE/BSE based: binary_c (1zzard), startrack (Belczynski), biseps
(Kolb), Seba (Nelemans,Toonen) (SSE++), COMPAS, etc.

— Others: Ibis (Tutukov), Scenario machine (Lipunov)
Code summary: De Marco & lzzard (2017, arXiv 1611.03542) Table 2

STAR TRACKY
h,




* Traditional (Henyey) code
— STARS (+family), BEC, BINSTAR, PNSxi), MESA, Geneva, etc.
* Offload ~ detached (“well-understood”) stellar evolution
“Synthetic” stellar evolution codes

— SSE/BSE based: binary_c (1zzard), startrack (Belczynski), biseps
(Kolb), Seba (Nelemans,Toonen) (SSE++), COMPAS, etc.

— Others: Ibis (Tutukov), Scenario machine (Lipunov)
e Hybrid codes

— BSE + NBODY®6 (Aarseth, Hurley) also MOCCA (Giersz)

— BSE + STARS (church)
Qimatsiz. | m

— BSE + MESA (Chen+ 2014)
Code summary: De Marco & lzzard (2017) Table 2
IMBASE 2017 — Robert Izzard
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Pros ... and cons

+ Parameter space tractable: error bars v \ @

+ Stable, fast, easily fixed

+ Resolution: 1,000,000 stars easily.

— Systematics: Only as good as your input model set (fixed!)
your binary algorithm and input distributions:

— Requires “non-canonical” treatment
Off grid models e.g. helium stars, mergers, non-thermal-eq.

— Hard to deal with thermal-timescale mass transfer

— Lose (most) internal structure information

IMBASE 2017 — Robert Izzard 29



Only as good as your input models
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Binary
Interaction
especially
Common
Envelope

Evolution
Is often

not well
modelled
in
- ALL &
codes
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Models vs observations

 ...whichis the best ?

#Objects density (log)

-0.2 0.0 0.2 0.4 0.6 0.8 >1.0
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Bayesian methods P (A|B) — P(BKEI)BI)D(A)

Given L, T ¢ and g, what is M?

j / | 0.35

1 0.30

1 0.25
1 0.20

Probability Density
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S — —
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Probability 1.
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- - : - - o

oo wo o
Probability

o O
Density

o
(=

T Y B e % D G g
Initial Mass / M@

Torres et al. (2010) V3903 Sgr A: M = 27.27 4 0.55 M
Best model fit: M = 26.8720 M, age = 2.0772

http://www.astro.uni-bonn.de/stars/bonnsai/
IMBASE 2017 — Robert Izzard
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Bayes for populations

BHBH mergers -
Preferred population
parameters based on Bayseian

kS

,g:"’: __ fﬁl likelihoods / posteriors.
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Systematics: POPCORN tests

binary_c

StarTrack

binary_c .
VS Y -
SeBa i )
VS Fig, 10. Sccondary WD mass versus primary WD mass for all DWDs in the full mass range at the time of DWD formation.
StarTrack | +— = Bomee e se ame
VS J 8
Brussels | * * .

7] [T] [T] 10 12 14
My 4ea (M) M, 4ea (M)

binary_c

StarTrack

-

Fig. 11. Secondary WD mass versus primary WD mass for all DWDs in the intermediate mass range at the time of DWD formation.

z 4 ] ] 10 2 4 ] ]

Fig. 12, Initial orbital separation versus initial primary mass for all DWDs in the full mass range.
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Parameter space blobs

| %A i VE‘

X X X

Z=0.001 Z=0.005 Z=0.01
Many blobs are red: they change little with the parameter

Blue could be: CH stars — lots at Z=0.001; none at Z=0.02
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Example: parameter space of NS-NS merger rates
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Example: CEMP stars, observed CEMP/EMP=10-20%

12G and "N vyield

(M)

T )

Vieldes alas Lattanzic ' '
ields: Karakas, Lugaro, Lattanzio 4 0.08
0.12 F -
-
dredge-up e (.06
0.08 | HBB
4 0.04
0.04 4 0.02
! B
0 . ' 0
1 1.5 2 2.5 3 3.5 4 4.5 5

Initial Mass (M...)

Models: Lucatello+ 2005 20% if top-heavy IMF
lzzard+ 2009 2.3% — fails
Pols+ 2012 but this makes NEMP stars! (very rare)

|zzard+2009,Abate+201x: low M DUP+WRLOF - 15% ?

IMBASE 2017 — Robert Izzard
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Binary Popsyn in The News!

05/07/2017 Rare stars in the Milky Way actually come from other galaxies, say Cambridge students - Cambridge News

@ ‘:*E 22°C JOBS PROPERTY MOTORS BUY/SELL DIRECTORY PLUSREWARDS DATING FAMILY NOTICES PUBLIC NOTICES CROSSWORDS PLACEAI

7N

B \MBRIDGE a

news

Rare stars in the Milky Way actually come from other galaxies, say
Cambridge students

The group of scientists believe these rare 'blue' stars come from a dwarf galaxy called the Large Magellanic Cloud, which is thought to orbit
the Milky Way

00600 O:
COMMENTS

BY BERNY TORRE
05:00, 5JUL 2017

L)
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05/07/2017 The Milky Way is hosting ‘'runaway stars' from a galaxy far, far away - Mirror Online

-}:i:» 24°C OFFERS FANTASY BINGO DATING JOBS BUYSELL COMPETITIONS HOROSCOPES LOANS CARTOONS CROSSWORDS

The Milky Way is hosting ‘runaway stars' from a galaxy far, far away

Research claims rare, fast-moving stars in the Milky Way have actually travelled in from other galaxies

0000 0O....

BY JEFF PARSONS
17:11,5)UL 2017

Get Daily updates directly to your inbox

Enter your email + Subscribe

Inside the Milky Way are extremely rare, fast-moving stars called hypervelocity stars.

So far, only 20 have been identified and scientists have puzzled over where they came from. It was previously suggested they were expelled
from the centre of our galaxy by a supermassive black hole.

But new research seems to suggest that might not be the case.

A team of star hunters from Cambridge University have published new research claiming they have journeyed across the cosmos from
another galaxy to join our own.

M rran morr

This website uses cookies. Using this website means you are okay with this but you can find out more and learn how to manage your cookie choices here. @
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Runaways from the LMC ?

*‘?#

binary ¢ + GADGET3 - MW + LMC model
V.= 378km/s

IMBASE 2017 — Robert Izzard Boubert et al. (2017) MNRAS/arXiv 1704.01373 41



1720 Myr ago LMC is 313 kpc away

Galactic

Number of stars per HEALPix
10! 10l 10! 10! 107

IMBASE 2017 — Robert Izzard Boubert et al. (2017) arXiv 1704.01373
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LMC runaways

Douglas Boubert


Observed

LMC runaways (dlSk zoom) B-type
Unbound
Hypervelocity
i e Stars

...................

"These stars have just jumped from an express train - no wonder they're fast," said co-
author Rob Izzard, a Rutherford fellow at the Institute of Astronomy. "This also
explains their position in the sky, because the fastest runaways are ejected along the
orbit of the LMC towards the constellations of Leo and Sextans." (various news sources)

IMBASE 2017 — Robert Izzard Boubert et al. (2017) arXiv 1704.01373 43
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It must be true if it’s in the Daily Mail...

Feedback |b lee 11.6M

Daily Mlail

Lom

Latest Headlines | Science | Pictures | Discounts

Fastest stars in the Milky Way that
travel at speeds of up to 630 miles
per second may be 'runaways' from
other galaxies

o Only two dozen 'hypervelocity stars' have been observed in the Milky Way
o Until now, scientists believed that the speedy stars originated in our galaxy
o But researchers suggest that the stars may be runaways from a dwarf galaxy

e The predictions could pave the way for scientists to measure the mass of
neighbouring galaxies within the next 20 years

By SHIVALI BEST FOR MAILONLINE
PUBLISHED: 19:00 EDT, 4 July 2017 | UPDATED: 12:36 EDT, 5 July 2017

FIESC = b 120 s

Scientists have discovered that the fastest stars in the Milky Way may come from

OIA R[N T\ VAT MM R {ORYETES[olg  Are you a developer? Try out the HTML to PDF API

@ Site O Web

Like Follow

DailyMail MailOnline
(}') Follow 8 + M

DailyMail DailyMail

~ Today's headlines Most Read

Download our iPhone
app

\ Download our
Android app

Does this photo prove Amelia Earhart

i ;;M SURV dina but was then
—t f - gptured by the Japanese™...

el Hadrian X builder bot that can lay 1,000

bricks an hour and build a house in two
W= days backed by construction...
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L7 g E'l‘i Yet, we are lucky.

Ij % The evolution of humans is
O i « far more difficult to model.
= H‘ T Predictions are very difficult!
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& Yet, we are lucky.
The evolution of humans is

. far more difficult to model.
T Predictions are very difficult!
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Yet, we are lucky.
The evolution of humans is
far more difficult to model
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Conclusions

Binary population synthesis Is a valuable tool.
Can solve many problems! ** /\* L

Yet many remain.

(common envelope, etc.)
It can contribute greatly to solving themI

Equivalent single star m1t1a1 mass (M o)

70 35 20 15 10 8
1600 T — T T T T

== sjngle stars
I incl. binaries
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Time after starburst (Myr)
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